×

A spatial convexity descriptor for object enlacement. (English) Zbl 1522.68635

Couprie, Michel (ed.) et al., Discrete geometry for computer imagery. 21st IAPR international conference, DGCI 2019, Marne-la-Vallée, France, March 26–28, 2019, Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 11414, 330-342 (2019).
Summary: In [S. Brunetti et al., Lect. Notes Comput. Sci. 10256, 105–116 (2017; Zbl 1486.68207)] a spatial convexity descriptor is designed which provides a quantitative representation of an object by means of relative positions of its points. The descriptor uses so-called Quadrant-convexity and therefore, it is an immediate two-dimensional convexity descriptor. In this paper we extend the definition to spatial relations between objects and consider complex spatial relations like enlacement and interlacement. This approach permits to easily model these kinds of configurations as highlighted by the examples, and it allows us to define two interlacement descriptors which differ in the normalization. Experiments show a good behavior of them in the studied cases, and compare their performances.
For the entire collection see [Zbl 1420.68008].

MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
68U10 Computing methodologies for image processing

Citations:

Zbl 1486.68207

Software:

WEKA
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Balázs, P., Brunetti, S.: A measure of Q-convexity. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 219-230. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32360-2_17 · Zbl 1430.94007 · doi:10.1007/978-3-319-32360-2_17
[2] Balázs, P., Brunetti, S.: A new shape descriptor based on a Q-convexity measure. In: Kropatsch, W.G., Artner, N.M., Janusch, I. (eds.) DGCI 2017. LNCS, vol. 10502, pp. 267-278. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66272-5_22 · Zbl 1430.94008 · doi:10.1007/978-3-319-66272-5_22
[3] Balázs, P., Ozsvár, Z., Tasi, T.S., Nyúl, L.G.: A measure of directional convexity inspired by binary tomography. Fundam. Inform. 141(2-3), 151-167 (2015) · Zbl 1342.68328 · doi:10.3233/FI-2015-1269
[4] Bloch, I.: Fuzzy sets for image processing and understanding. Fuzzy Sets Syst. 281, 280-291 (2015) · Zbl 1423.94004 · doi:10.1016/j.fss.2015.06.017
[5] Bloch, I., Colliot, O., Cesar Jr., R.M.: On the ternary spatial relation “between”. IEEE Trans. Syst. Man Cybern. B Cybern. 36(2), 312-327 (2006) · doi:10.1109/TSMCB.2005.857095
[6] Boxer, L.: Computing deviations from convexity in polygons. Pattern Recogn. Lett. 14, 163-167 (1993) · Zbl 0783.68128 · doi:10.1016/0167-8655(93)90067-N
[7] Brunetti, S., Balázs, P., Bodnár, P.: Extension of a one-dimensional convexity measure to two dimensions. In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp. 105-116. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59108-7_9 · Zbl 1486.68207 · doi:10.1007/978-3-319-59108-7_9
[8] Brunetti, S., Daurat, A.: An algorithm reconstructing convex lattice sets. Theor. Comput. Sci. 304(1-3), 35-57 (2003) · Zbl 1044.68157 · doi:10.1016/S0304-3975(03)00050-1
[9] Brunetti, S., Daurat, A.: Reconstruction of convex lattice sets from tomographic projections in quartic time. Theor. Comput. Sci. 406(1-2), 55-62 (2008) · Zbl 1160.68039 · doi:10.1016/j.tcs.2008.06.003
[10] Clement, M., Poulenard, A., Kurtz, C., Wendling, L.: Directional enlacement histograms for the description of complex spatial configurations between objects. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2366-2380 (2017) · doi:10.1109/TPAMI.2016.2645151
[11] Clément, M., Kurtz, C., Wendling, L.: Fuzzy directional enlacement landscapes. In: Kropatsch, W.G., Artner, N.M., Janusch, I. (eds.) DGCI 2017. LNCS, vol. 10502, pp. 171-182. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66272-5_15 · Zbl 1430.94012 · doi:10.1007/978-3-319-66272-5_15
[12] Daurat, A.: Salient points of Q-convex sets. Int. J. Pattern Recognit. Artif. Intell. 15, 1023-1030 (2001) · doi:10.1142/S0218001401001350
[13] Daurat, A., Nivat, M.: Salient and reentrant points of discrete sets. Electron. Notes Discret. Math. 12, 208-219 (2003) · Zbl 1115.52300 · doi:10.1016/S1571-0653(04)00487-1
[14] Frank, E., Hall, M.A., Witten, I.H.: The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”, 4th edn. Morgan Kaufmann, Burlington (2016)
[15] Fraz, M.M., et al.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9), 2538-2548 (2012) · doi:10.1109/TBME.2012.2205687
[16] Gorelick, L., Veksler, O., Boykov, Y., Nieuwenhuis, C.: Convexity shape prior for segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 675-690. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_44 · doi:10.1007/978-3-319-10602-1_44
[17] Gorelick, L., Veksler, O., Boykov, Y., Nieuwenhuis, C.: Convexity shape prior for binary segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 258-271 (2017) · doi:10.1109/TPAMI.2016.2547399
[18] Latecki, L.J., Lakamper, R.: Convexity rule for shape decomposition based on discrete contour evolution. Comput. Vis. Image Underst. 73(3), 441-454 (1999) · doi:10.1006/cviu.1998.0738
[19] Matsakis, P., Wendling, L., Ni, J.: A general approach to the fuzzy modeling of spatial relationships. In: Jeansoulin, R., Papini, O., Prade, H., Schockaert, S. (eds.) Methods for Handling Imperfect Spatial Information, vol. 256, pp. 49-74. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14755-5_3 · doi:10.1007/978-3-642-14755-5_3
[20] Odstrcilik, J., et al.: Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Process. 7(4), 373-383 (2013) · doi:10.1049/iet-ipr.2012.0455
[21] Rahtu, E., Salo, M., Heikkila, J.: A new convexity measure based on a probabilistic interpretation of images. IEEE Trans. Pattern Anal. 28(9), 1501-1512 (2006) · doi:10.1109/TPAMI.2006.175
[22] Rosin, P.L., Zunic, J.: Probabilistic convexity measure. IET Image Process. 1(2), 182-188 (2007) · doi:10.1049/iet-ipr:20060185
[23] Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision, 3rd edn. Thomson Learning, Toronto (2008)
[24] Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501-509 (2004) · doi:10.1109/TMI.2004.825627
[25] Stern, H.: Polygonal entropy: a convexity measure. Pattern Recogn. Lett. 10, 229-235 (1998) · Zbl 0800.68794 · doi:10.1016/0167-8655(89)90093-7
[26] Tasi, T.S., Nyúl, L.G., Balázs, P.: Directional convexity measure for binary tomography. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013. LNCS, vol. 8259, pp. 9-16. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41827-3_2 · doi:10.1007/978-3-642-41827-3_2
[27] Vanegas, M.C., Bloch, I., Inglada, J.: A fuzzy definition of the spatial relation “surround” - application to complex shapes. In: Proceedings of EUSFLAT, pp. 844-851 (2011)
[28] Zunic, J., Rosin, P.L.: A new convexity measure for polygons. IEEE Trans. Pattern Anal. 26(7), 923-934 (2004) · doi:10.1109/TPAMI.2004.19
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.