×

Multivariate robust second-order stochastic dominance and resulting risk-averse optimization. (English) Zbl 1427.49027

Summary: By utilizing a min-biaffine scalarization function, we define the multivariate robust second-order stochastic dominance relationship to flexibly compare two random vectors. We discuss the basic properties of the multivariate robust second-order stochastic dominance and relate it to the nonpositiveness of a functional which is continuous and subdifferentiable everywhere. We study a stochastic optimization problem with multivariate robust second-order stochastic dominance constraints and develop the necessary and sufficient conditions of optimality in the convex case. After specifying an ambiguity set based on moments information, we approximate the ambiguity set by a series of sets consisting of discrete distributions. Furthermore, we design a convex approximation to the proposed stochastic optimization problem with multivariate robust second-order stochastic dominance constraints and establish its qualitative stability under Kantorovich metric and pseudo metric, respectively. All these results lay a theoretical foundation for the modelling and solution of complex stochastic decision-making problems with multivariate robust second-order stochastic dominance constraints.

MSC:

49K45 Optimality conditions for problems involving randomness
49M25 Discrete approximations in optimal control

Software:

DDSIP
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Müller, A.; Stoyan, D., Comparison methods for stochastic models and risks (2002), Chichester: John Wiley & Sons, Chichester · Zbl 0999.60002
[2] Shaked, M.; Shanthikumar, G., Stochastic orders (2007), New York: Springer, New York · Zbl 1111.62016
[3] Levy, H., Stochastic dominance: investment decision making under uncertainty (2015), New York: Springer, New York
[4] Dentcheva, D.; Ruszczyński, A., Optimization with stochastic dominance constraints, SIAM J Optim, 14, 2, 548-566 (2003) · Zbl 1055.90055
[5] Dentcheva, D.; Ruszczyński, A., Portfolio optimization with stochastic dominance constraints, J Bank Financ, 30, 2, 433-451 (2006)
[6] Luedtke, J., New formulations for optimization under stochastic dominance constraints, SIAM J Optim, 19, 3, 1433-1450 (2008) · Zbl 1180.90215
[7] Gollmer, R.; Gotzes, U.; Schultz, R., A note on second-order stochastic dominance constraints induced by mixed-integer linear recourse, Math Program, 126, 1, 179-190 (2011) · Zbl 1229.90109
[8] Drapkin, D.Models and algorithms for dominance-constrained stochastic programs with recourse. Dissertation. Duisburg-Essen, Universität; 2014.
[9] Drapkin, D, Gollmer, R, Gotzes, U, et al.. Risk management with stochastic dominance models in energy systems with dispersed generation. In: Bertocchi M, Consigli G, Dempster M, editors. Stochastic optimization methods in finance and energy. Vol. 163. New York: Springer; 2011. p. 253-271. · Zbl 1405.91482
[10] Rudolf, G.; Ruszczyński, A., Optimization problems with second order stochastic dominance constraints: duality, compact formulations, and cut generation methods, SIAM J Optim, 19, 3, 1326-1343 (2008) · Zbl 1198.90308
[11] Fábián, Ci; Mitra, G.; Roman, D., Processing second-order stochastic dominance models using cutting-plane representations, Math Program, 130, 1, 33-57 (2011) · Zbl 1229.90108
[12] Sun, H.; Xu, H.; Meskarian, R., Exact penalization, level function method, and modified cutting-plane method for stochastic programs with second order stochastic dominance constraints, SIAM J Optim, 23, 1, 602-631 (2013) · Zbl 1267.90009
[13] Kopa, M.; Post, T., A general test for SSD portfolio efficiency, OR Spectrum, 37, 3, 703-734 (2015) · Zbl 1318.91185
[14] Denuit, M.; Mesfioui, M., Generalized increasing convex and directionally convex orders, J Appl Probab, 47, 1, 264-276 (2010) · Zbl 1186.60010
[15] Armbruster, B.; Luedtke, J., Models and formulations for multivariate dominance-constrained stochastic programs, IIE Trans, 47, 1, 1-14 (2015)
[16] Levy, H., Stochastic dominance, efficiency criteria and efficient portfolios: the multiperiod case, Am Econ Rev, 63, 5, 986-994 (1973)
[17] Dentcheva, D.; Ruszczyński, A., Optimization with multivariate stochastic dominance constraints, Math Program, 117, 1-2, 111-127 (2009) · Zbl 1221.90069
[18] Homem-De-Mello, T.; Mehrotra, S., A cutting-surface method for uncertain linear programs with polyhedral stochastic dominance constraints, SIAM J Optim, 20, 3, 1250-1273 (2009) · Zbl 1198.90291
[19] Hu, J.; Homem-De-Mello, T.; Mehrotra, S., Sample average approximation of stochastic dominance constrained programs, Math Program, 133, 1, 171-201 (2012) · Zbl 1259.90083
[20] Noyan, N.; Rudolf, G., Optimization with stochastic preferences based on a general class of scalarization functions, Oper Res, 66, 2, 463-486 (2018) · Zbl 1473.90099
[21] Noyan, N.; Rudolf, G., Optimization with multivariate conditional value-at-risk constraints, Oper Res, 61, 4, 990-1013 (2013) · Zbl 1291.91124
[22] Kucukyavuz, S.; Noyan, N., Cut generation for optimization problems with multivariate risk constraints, Math Program, 159, 1, 165-199 (2016) · Zbl 1346.90642
[23] Dentcheva, D.; Ruszczyński, A., Robust stochastic dominance and its application to risk-averse optimization, Math Program, 123, 1, 85-100 (2010) · Zbl 1216.90064
[24] Guo, S.; Xu, H.; Zhang, L., Probability approximation schemes for stochastic programs with distributionally robust second-order dominance constraints, Optim Methods Softw, 32, 4, 770-789 (2017) · Zbl 1381.90062
[25] Erdoğan, E.; Iyengar, G., Ambiguous chance constrained problems and robust optimization, Math Program, 107, 1-2, 37-61 (2006) · Zbl 1134.90028
[26] Esfahani, M.; Kuhn, D., Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations, Math Program, 171, 1-2, 115-166 (2018) · Zbl 1433.90095
[27] Jiang, R.; Guan, Y., Data-driven chance constrained stochastic program, Math Program, 158, 1-2, 291-327 (2016) · Zbl 1346.90640
[28] Bayraksan, G.; Love, D., Data-driven stochastic programming using Phi-diverences, Tutorials Oper Res, 0, 1-15 (2015)
[29] Zymler, S.; Kuhn, D.; Rustem, B., Distributionally robust joint chance constraints with second-order moment information, Math Program, 137, 1-2, 167-198 (2013) · Zbl 1286.90103
[30] Delage, E.; Ye, Y., Distributionally robust optimization under moment uncertainty with application to data-driven problems, Oper Res, 58, 3, 595-612 (2010) · Zbl 1228.90064
[31] Scarf, H.A min-max solution of an inventory problem. In: Arrow K, Karlin S, Scarf H, editors. Studies in the mathematical theory of inventory and production. California: Stanford University Press; 1958. p. 201-209.
[32] Markowitz, H., Portfolio selection, J Finance, 7, 1, 77-91 (1952)
[33] El Ghaoui, L.; Oks, M.; Oustry, F., Worst-case value-at-risk and robust portfolio optimization: a conic programming approach, Oper Res, 51, 4, 543-556 (2003) · Zbl 1165.91397
[34] Chen, L.; He, S.; Zhang, S., Tight bounds for some risk measures, with applications to robust portfolio selection, Oper Res, 59, 4, 847-865 (2011) · Zbl 1233.91236
[35] Li, J., Closed-form solutions for worst-case law invariant risk measures with application to robust portfolio optimization, Oper Res (2018) · Zbl 1455.91238 · doi:10.1287/opre.2018.1736
[36] Gao, R, Kleywegt, A.Distributionally robust stochastic optimization with Wasserstein distance. ArXiv. 2016;
[37] Lobo, M, Boyd, S.The worst-case risk of a portfolio[R]. Technical report; 2000. Available from:
[38] Cheng, J.; Delage, E.; Lisser, A., Distributionally robust stochastic knapsack problem, SIAM J Optim, 24, 3, 1485-1506 (2014) · Zbl 1336.90071
[39] Adams, R.; Fournier, J., Sobolev spaces (2003), Singapore: Elsevier, Singapore · Zbl 1098.46001
[40] Ogryczak, W.; Ruszczyński, A., On consistency of stochastic dominance and mean-semideviation models, Math Program, 89, 2, 217-232 (2001) · Zbl 1014.91021
[41] Pichler, A, Xu, H.Quantitative stability analysis for minimax distributionally robust risk optimization; 2016. Available from: · Zbl 1489.90089
[42] Phelps, R., Convex functions, monotone operators and differentiability (1989), New York: Springer, New York · Zbl 0658.46035
[43] Ruszczyński, A.; Shapiro, A., Optimization of convex risk functions, Math Oper Res, 31, 3, 433-452 (2006) · Zbl 1278.90283
[44] Shapiro, A.; Dentcheva, D.; Ruszczyński, A., Lectures on stochastic programming: modeling and theory (2009), Philadelphia: MPS-SIAM Series on Optimization, Philadelphia · Zbl 1183.90005
[45] Diestel, J.; Uhl, J., Vector measures (1977), Rhode Island: American Mathematical Society, Rhode Island · Zbl 0369.46039
[46] Bonnans, J.; Shapiro, A., Perturbation analysis of optimization problems (2000), New York: Springer, New York · Zbl 0966.49001
[47] Xu, H.; Liu, Y.; Sun, H., Distributionally robust optimization with matrix moment constraints: Lagrange duality and cutting plane methods, Math Program, 169, 2, 489-529 (2018) · Zbl 1391.90449
[48] Römisch, W.Stability of stochastic programming problems. In: Ruszczyński A, Shapiro A, editors. Handbooks in operations research and management science. Vol. 10. Amsterdam: Elsevier; 2003. p. 483-554. · Zbl 1115.90001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.