×

Stability analysis of smoothed finite element methods with explicit method for transient heat transfer problems. (English) Zbl 07124745

Summary: In this paper, transient heat transfer problems are analyzed using the smoothed finite element methods (S-FEMs) with explicit time integration. For a numerical method with spatial discretization, the computational cost per time step in the explicit method is less than that in the implicit method, but the time step is much smaller in the explicit analysis than that in the implicit analysis when the same mesh is used. This is because the stability is of essential importance. This work thus studies the stability of S-FEMs, when applied to transient heat transfer problems. Relationships are established between the critical time steps used in S-FEMs with the maximum eigenvalues of the thermal stiffness (conduction) matrix and mass matrix. It is found that the critical time step relates to the “softness” of the model. For example, node-based smoothed finite element method (NS-FEM) is softer than edge-based smoothed finite element method (ES-FEM), which leads to that the critical time step of NS-FEM is larger than that of ES-FEM. Because computing the eigenvalues and condition numbers of the stiffness matrices is very expensive but valuable for stability analysis, we proposed a concise and effective algorithm to estimate the maximum eigenvalue and condition number. Intensive numerical examples show that our scheme for computing the critical time step can work accurately and stably for the explicit method in FEM and S-FEMs.

MSC:

80-XX Classical thermodynamics, heat transfer
65-XX Numerical analysis

Software:

JDQZ; JDQR
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bai, Z. J., Demmel, J., Dongarra, J., Ruhe, A. and van der Vorst, H. [2000] Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide (Society for Industrial and Applied Mathematics, Philadelphia). · Zbl 0965.65058
[2] Bathe, K. J. and Baig, M. M. I. [2005] “ On a composite implicit time integration procedure for nonlinear dynamics,” Comput. Struct.83(31-32), 2513-2524.
[3] Bathe, K. J. [2007] “ Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme,” Comput. Struct.85(7-8), 437-445.
[4] Budak, B. M., Samarskii, A. A. and Tikhenev, A. H. [1964] “ Equations of parabolic type”and “Equations of elliptic type,” in A Collection of Problems on Mathematical Physics (Pergamon Press, New York), pp. 331-332 and 456.
[5] Chang, S. Y. [2010] “ A new family of explicit methods for linear structural dynamics,” Comput. Struct.88(11-12), 755-772.
[6] Chen, J., Wu, C., Yoon, S. and You, Y. [2015] “ A stabilized conforming nodal integration for Galerkin mesh-free methods,” Int. J. Numer. Methods Eng.50(2), 435-466. · Zbl 1011.74081
[7] Chen, M., Li, M. and Liu, G. R. [2016] “ Mathematical basis of G spaces,” Int. J. Comput. Methods13(4), 1641007-1-1641007-21. · Zbl 1359.46024
[8] Chung, J. and Lee, J. M. [1994] “ A new family of explicit time integration methods for linear and non-linear structural dynamics,” Int. J. Numer. Methods Eng.37(23), 3961-3976. · Zbl 0814.73074
[9] Dai, K. Y., Liu, G. R. and Nguyen-Thoi, T. [2007] “ An \(<mml:math display=''inline`` overflow=''scroll``>\)-sided polygonal smoothed finite element method \((<mml:math display=''inline`` overflow=''scroll``>\) SFEM) for solid mechanics,” Finite Elem. Anal. Des.43(11-12), 847-860.
[10] Du, C. F., Zhang, D. G. and Liu, G. R. [2017] “A cell-based smoothed finite element method for free vibration analysis of a rotating plate,” to appear in Int. J.Comput. Methods, doi:10.1142/S0219876218400030. · Zbl 07074130
[11] He, Z. C., Li, G. Y., Zhong, Z. H., Cheng, A. G., Zhang, G. Y., Li, E. and Liu, G. R. [2012] “ An ES-FEM for accurate analysis of 3D mid-frequency acoustics using tetrahedronmesh,” Comput. Struct.106-107, 125-134.
[12] He, Z. C., Zhang, G. Y., Deng, L., Li, E. and Liu, G. R. [2015] “ Topology optimization using node-based smoothed finite element method,” Int. J. Appl. Mech.7(6), 1550085-1-1550085-23.
[13] Johnson, C. R. [1970] “ Positive definite matrices,” Am. Math. Mon.77(3), 259-264. · Zbl 0261.15012
[14] Lewis, R. W., Morgan, K., Thomas, H. R. and Seetharamu, K. [1996] The Finite Element Method in Heat Transfer (John Wiley & Sons, Chichester). · Zbl 0847.65072
[15] Li, E., He, Z. C. and Xu, X. [2013] “ An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for thermomechanical problems,” Int. J. Heat Mass Transf.66(11), 723-732.
[16] Li, E., He, Z. C., Xu, X. and Liu, G. R. [2015] “ Hybrid smoothed finite element method for acoustic problems,” Comput. Methods Appl. Mech. Eng.283(1), 664-688. · Zbl 1423.74902
[17] Li, E., He, Z. C., Hu, J. Y. and Long, X. Y. [2017] “ Volumetric locking issue with uncertainty in the design of locally resonant acoustic metamaterials,” Comput. Methods Appl. Mech. Eng.324, 128-148. · Zbl 1439.74137
[18] Liu, G. R. and Nguyen-Thoi, T. [2010] Smoothed Finite Element Methods (CRC Press, Boca Raton).
[19] Liu, G. R. and Zhang, G. Y. [2010] “ Upper bound solution to elasticity problems: A unique property of the linearly conforming point inter polation method (LC-PIM),” Int. J. Numer. Methods Eng.74(7), 1128-1161. · Zbl 1158.74532
[20] Liu, G. R. and Zhang, G. Y. [2013] Smoothed Point Interpolation Methods: G Space Theory and Weakened Weak Forms (World Scientific, Singapore). · Zbl 1278.65002
[21] Liu, G. R., Dai, K. Y. and Nguyen-Thoi, T. [2007] “ A smoothed finite element method for mechanics problems,” Comput. Mech.39(6), 859-877. · Zbl 1169.74047
[22] Liu, G. R., Nguyen-Thoi, T. and Lam, K. Y. [2008] “ A novel alpha finite element method \((<mml:math display=''inline`` overflow=''scroll``>\) FEM) for exact solution to mechanics problems using triangular and tetrahedral elements,” Comput. Methods Appl. Mech. Eng.197(45-48), 3883-3897. · Zbl 1194.74433
[23] Liu, G. R., Nguyen-Thoi, T. and Lam, K. Y. [2009a] “ An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids,” J. Sound Vib.320(4-5), 1100-1130.
[24] Liu, G. R., Nguyen-Thoi, T., Nguyen-Xuan, H. and Lam, K. Y. [2009b] “ A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems,” Comput. Struct.87(1-2), 14-26.
[25] Liu, G. R., Chen, M. and Li, M. [2017] “ Lower bound of vibration modes using the node-based smoothed finite element method (NS-FEM),” Int. J. Comput. Methods14(4), 1750036-1-1750036-36. · Zbl 1404.74163
[26] Liu, G. R. [2008] “ A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods,” Int. J. Comput. Methods5(2), 199-236. · Zbl 1222.74044
[27] Liu, G. R. [2009] Mesh Free Methods: Moving Beyond the Finite Element Method, Second Edition (CRC Press, Boca Raton).
[28] Liu, G. R. [2016a] “ An overview on meshfree methods: For computational solid mechanics,” Int. J. Comput. Methods13(5), 1630001-1-1630001-42. · Zbl 1359.74388
[29] Liu, G. R. [2016b] “ On partitions of unity property of nodal shape functions: Rigid-body-movement reproduction and mass conservation,” Int. J. Comput. Methods13, 1640003-1-1640003-13. · Zbl 1359.65261
[30] Nguyen-Thoi, T., Liu, G. R., Lam, K. Y. and Zhang, G. Y. [2009] “ A face-based smoothed finite element method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node tetrahedral elements,” Int. J. Numer. Methods Eng.78(3), 324-353. · Zbl 1183.74299
[31] Noh, G. and Bathe, K. J. [2013] “ An explicit time integration scheme for the analysis of wave propagations,” Comput. Struct.129, 178-193.
[32] Ortega, E., Oñate, E. and Idelsohn, S. [2007] “ An improved finite point method for tridimensional potential flows,” Comput. Mech.40(6), 949-963. · Zbl 1176.76100
[33] Pian, T. H. H. and Wu, C. C. [2006] Hybrid and Incompatible Finite Element Methods (CRC Press, Boca Raton). · Zbl 1110.65003
[34] Smolinski, P., Sleith, S. and Belytschko, T. [1996] “ Stability of an explicit multi-time step integration algorithm for linear structural dynamics equations,” Comput. Mech.18(3), 236-244. · Zbl 0865.73075
[35] Smolinski, P., Belytschko, T. and Neal, M. [2010] “ Multi-time-step integration using nodal partitioning,” Int. J. Numer. Methods Eng.26(2), 349-359. · Zbl 0629.73076
[36] Wang, X. C. [2003] Finite Element Methods (Tsinghua University Press, Beijing).
[37] Xu, X., Zheng, Z. Q., Gu, Y. T. and Liu, G. R. [2016] “ A quasi-conforming point interpolation method (QC-PIM) for elasticity problems,” Int. J. Comput. Methods13(5), 1650026-1-1650026-14. · Zbl 1359.74452
[38] Zienkiewicz, O. C. and Taylor, R. L. [2000] The Finite Element Method, 5th edition (Butterworth Heinemann, Oxford). · Zbl 0991.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.