×

Off-shell Bethe states and the six-vertex model. (English) Zbl 1431.82011

J. Math. Sci., New York 242, No. 5, 742-752 (2019) and Zap. Nauchn. Semin. POMI 473, 228-243 (2018).
Summary: We study the symmetric six-vertex model on a finite square lattice with partial domain wall boundary conditions. We use the known connection of the model to the off-shell Bethe states of the Heisenberg XXZ spin chain. We obtain various formulas for the partition function, and also discuss the model in the limit of semiinfinite lattice.

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B23 Exactly solvable models; Bethe ansatz
82D45 Statistical mechanics of ferroelectrics

Software:

Pfaffian
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] V. E. Korepin, “Calculations of norms of Bethe wave functions,” Comm. Math. Phys., 86, 391-418 (1982). · Zbl 0531.60096 · doi:10.1007/BF01212176
[2] A. G. Izergin, “Partition function of the six-vertex model in the finite volume,” Sov. Phys. Dokl., 32, 878-879 (1987). · Zbl 0875.82015
[3] A. G. Izergin, D. A. Coker, and V. E. Korepin, “Determinant formula for the six-vertex model,” J. Phys. A, 25, 4315-4334 (1992). · Zbl 0764.60114 · doi:10.1088/0305-4470/25/16/010
[4] G. Kuperberg, “Symmetry classes of alternating-sign matrices under one roof,” Ann. Math., 156, 835-866 (2002). · Zbl 1010.05014 · doi:10.2307/3597283
[5] A. V. Razumov and Yu. G. Stroganov, “Enumerations of half-turn-symmetric alternatingsign matrices of odd order,” Theoret. Math. Phys., 148, 1174-1198 (2006). · Zbl 1177.15041 · doi:10.1007/s11232-006-0111-8
[6] A. V. Razumov and Yu. G. Stroganov, “Enumeration of quarter-turn-symmetric alternating-sign matrices of odd order,” Theoret. Math. Phys., 149, 1639-1650 (2006). · Zbl 1177.15035 · doi:10.1007/s11232-006-0148-8
[7] N. M. Bogoliubov, “Five-vertex model with fixed boundary conditions,” St.Petersburg Math. J., 21, 407-421 (2010). · Zbl 1194.81174 · doi:10.1090/S1061-0022-10-01100-3
[8] N. M. Bogoliubov, “Scalar products of state vectors in totally asymmetric exactly solvable models on a ring,” J. Math. Sci. (N.Y.), 192, 1-13 (2013). · Zbl 1325.82013 · doi:10.1007/s10958-013-1368-8
[9] N. M. Bogoliubov and C. L. Malyshev, “Integrable models and combinatorics,” Russian Math. Surveys, 70, 789-856 (2015). · Zbl 1351.82016 · doi:10.1070/RM2015v070n05ABEH004964
[10] A. G. Pronko, “The five-vertex model and enumerations of plane partitions,” J. Math. Sci. (N.Y.), 213, 756-768 (2016). · Zbl 1344.82022 · doi:10.1007/s10958-016-2737-x
[11] O. Foda and M. Wheeler, “Partial domain wall partition functions,” J. High Energy Phys., 2012, No. 7, 186 (2012). · Zbl 1397.81195 · doi:10.1007/JHEP07(2012)186
[12] P. Bleher and K. Liechty, “Six-vertex model with partial domain wall boundary conditions: Ferroelectric phase,” J. Math. Phys., 56, 023302 (2015). · Zbl 1334.82077 · doi:10.1063/1.4908227
[13] K. Eloranta, “Diamond ice,” J. Stat. Phys., 96, 1091-1109 (1999). · Zbl 1080.82514 · doi:10.1023/A:1004644418182
[14] P. Zinn-Justin, “The influence of boundary conditions in the six-vertex model,” arXiv:cond-mat/0205192. · Zbl 0956.82008
[15] F. Colomo and A. G. Pronko, “The arctic curve of the domain-wall six-vertex model,” J. Stat. Phys., 138, 662-700 (2010). · Zbl 1187.82019 · doi:10.1007/s10955-009-9902-2
[16] F. Colomo and A. Sportiello, “Arctic curves of the six-vertex model on generic domains: the Tangent Method,” J. Stat. Phys., 164, 1488-1523 (2016). · Zbl 1354.82006 · doi:10.1007/s10955-016-1590-0
[17] I. Lyberg, V. Korepin, G. A. P. Ribeiro, and J. Viti, “Phase separation in the six-vertex model with a variety of boundary conditions,” J. Math. Phys., 59, 053301 (2018). · Zbl 1388.82007 · doi:10.1063/1.5018324
[18] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, San Diego (1982). · Zbl 0538.60093
[19] F. Colomo and A. G. Pronko, “An approach for calculating correlation functions in the sixvertex model with domain wall boundary conditions,” Theoret. Math. Phys., 171, 641-654 (2012). · Zbl 1282.82013 · doi:10.1007/s11232-012-0061-2
[20] V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge (1993). · Zbl 0787.47006 · doi:10.1017/CBO9780511628832
[21] A. G. Izergin, V. E. Korepin, and N. Yu. Reshetikhin, “Correlation functions in a onedimensional Bose gas,” J. Phys. A, 20, 4799-4822 (1987). · doi:10.1088/0305-4470/20/14/022
[22] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford Univ. Press, Oxford (1995). · Zbl 0824.05059
[23] N. M. Bogoliubov, A. G. Pronko, and M. B. Zvonarev, “Boundary correlation functions of the six-vertex model,” J. Phys. A, 35, 5525-5541 (2002). · Zbl 1043.82003 · doi:10.1088/0305-4470/35/27/301
[24] F. Colomo and A. G. Pronko, “Emptiness formation probability in the domain-wall sixvertex model,” Nucl. Phys. B, 798, 340-362 (2008). · Zbl 1234.82007 · doi:10.1016/j.nuclphysb.2007.12.016
[25] G. Kuberberg, “Another proof of the alternating-sign matrix conjecture,” Int. Res. Math. Notices, 1996, 139-150 (1996). · Zbl 0859.05027 · doi:10.1155/S1073792896000128
[26] L.-H. Gwa and H. Spohn, “Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian,” Phys. Rev. Lett., 68, 725-728 (1992). · Zbl 0969.82526 · doi:10.1103/PhysRevLett.68.725
[27] L. Cantini, private communication.
[28] C. González-Ballestero, L. M. Robledo, and G. F. Bertsch, “Numeric and symbolic evaluation of the Pfaffian of general skew-symmetric matrices,” Comput. Phys. Comm., 182, 2213-2218 (2011). · Zbl 1221.65105 · doi:10.1016/j.cpc.2011.04.025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.