×

Correcting interface turbulence viscosity using CFD modeling for predicting stratified gas-liquid flow shear stress in horizontal pipes. (English) Zbl 1477.76048

Summary: The prediction of different shear stresses is one of the great challenges of turbulent-turbulent stratified two-phase flow in horizontal pipes. In this work, VOF method, near-wall differential viscosity and local turbulence viscosity distribution coefficient function are introduced and offer an efficient tool to correct the interface turbulence viscosity. The results show that the new method can better predict the shear stresses, liquid holdup and pressure drop of stratified two-phase flow. The fitting relationship between interfacial and wall friction factor \((f_i /f_W)\) is in good agreement with the experimental data. It is found that \(f_i/f_W\) is predicted with a relative error of 12.62% by the new method, which is much less than that by any other method when the gas and liquid superficial Reynolds numbers are \(8000 \leq\mathrm{Re}_{S G}\leq 90,000\) and \(5000 \leq\mathrm{Re}_{S L}\leq 170,000\). It provides a reliable method for achieving the closure of stratified flow to predict the shear stresses.

MSC:

76F45 Stratification effects in turbulence
76T10 Liquid-gas two-phase flows, bubbly flows
76M99 Basic methods in fluid mechanics

Software:

Gerris; PROST
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Newton, C. H.; Behnia, M., A numerical model of stratified-wavy gas-liquid pipe flow, Chem. Eng. Sci., 56, 6851-6861 (2001)
[2] Ullmann, A.; Brauner, N., Closure relations for two-fluid models for two-phase stratified smooth and stratified wavy flows, Int. J. Multiphas. Flow, 32, 82-105 (2006) · Zbl 1135.76566
[3] Liné, A.; Lopez, D., Two-fluid model of wavy separated two-phase flow, Int. J. Multiphas. Flow, 23, 1131-1146 (1997) · Zbl 1135.76476
[4] Spedding, P. L.; Benard, E.; Donnelly, G. F., Prediction of pressure drop in Multiphas. horizontal pipe flow, Int. Commun. Heat Mass, 33, 1053-1062 (2006)
[5] Taitel, Y.; Dukler, A. E., A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow, AIChE J., 22, 47-55 (1976)
[6] Kowalski, J. E., Wall and interfacial shear stress in stratified flow in a horizontal pipe, AIChE J., 32, 274-281 (1987)
[7] Tzotzi, C.; Andritsos, N., Interfacial shear stress in wavy stratified gas-liquid flow in horizontal Pipes, Int. J. Multiphas. Flow, 54, 43-54 (2013)
[8] Meknassi, F.; Benkirane, R.; Liné, A.; Masbernat, L., Numerical modelling of wavy stratified two-phase flow in pipes, Chem. Eng. Sci., 55, 4681-4697 (2000)
[9] Strand, O., An Experimental Investigation of Stratified Two-Phase Flow in Horizontal Pipes (1993), University of Oslo: University of Oslo Norway, (Ph.D. Thesis)
[10] D. Lopez, Ecoulements diphasiques a phases separees a faible contenu de liquide, I.N.P. Toulouse, France, 1994.
[11] Newton, C. H.; Behnia, M., Numerical calculation of turbulent stratified-gas-liquid pipe flows, Int. J. Multiphas. Flow, 26, 327-337 (2000) · Zbl 1388.76265
[12] Renardy, Y.; Renardy, M., Prost: a parabolic reconstruction of surface tension for the volume-of-fluid method, J. Comput. Phys., 183, 400-421 (2002) · Zbl 1057.76569
[13] Francois, M. M.; Cummins, S. J.; Dendy, E. D.; Kothe, D. B.; Sicilian, J. M.; Williams, M. W., A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework, J. Comput. Phys., 213, 141-173 (2006) · Zbl 1137.76465
[14] Popinet, S., An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comput. Phys., 228, 5838-5866 (2009) · Zbl 1280.76020
[15] Abu-Al-Saud, M. O.; Popinet, S.; Tchelepi, H. A., A conservative and well-balanced surface tension model, J. Comput. Phys., 371, 896-913 (2018) · Zbl 1415.76494
[16] Rider, W. J.; Kothe, D. B., Reconstructing volume tracking, J. Comput. Phys., 141, 112-152 (1998) · Zbl 0933.76069
[17] Pilliod, J. E.; Puckett, E. G., Second-order accurate volume-of-fluid algorithms for tracking material interfaces, J. Comput. Phys., 199, 465-502 (2004) · Zbl 1126.76347
[18] Liovic, P.; Francois, M.; Rudman, M.; Manasseh, R., Efficient simulation of surface tension-dominated flows through enhanced interface geometry interrogation, J. Comput. Phys., 229, 7520-7544 (2010) · Zbl 1425.76165
[19] Gerrits, J., Dynamics of Liquid-Filled Spacecraft: Numerical Simulation of Coupled Solid-Liquid Dynamics (2001), University of Groningen
[20] Baltussen, M. W.; Kuipers, J. A.M.; Deen, N. G., A critical comparison of surface tension models for the volume of fluid method, Chem. Eng. Sci., 109, 65-74 (2014)
[21] ANSYS FLUENT, ANSYS FLUENT Theory Guide Release 16.0. ANSYS Inc., 2014.
[22] Ghorai, S.; Nigam, K. D.P., CFD modelling of flow profiles and interfacial phenomena in two-phase flow in pipes, Chem. Eng. Process., 45, 55-65 (2006)
[23] Sidi-Ali, K.; Gatignol, R., Interfacial friction factor determination using CFD simulations in a horizontal stratified two-phase flow, Chem. Eng. Sci., 65, 5160-5169 (2010)
[24] Höhne, T.; Mehlhoop, J.-P., Validation of closure models for interfacial drag and turbulence in numerical simulations of horizontal stratified gas-liquid flows, Int. J. Multiphas. Flow, 62, 1-16 (2014)
[25] Ningegowda, B. M.; Premachandran, B., A Coupled Level Set and Volume of Fluid method with multi-directional advection algorithms for two-phase flows with and without phase change, Int. J. Heat Mass Transfer, 79, 532-550 (2014)
[26] Lockhart, R. W.; Martinelli, R. C., Proposed correlation of data for isothermal two-phase, two-component flow in pipes, Chem. Eng. Prog., 45, 39-48 (1949)
[27] Brackbill, J. U.; Kothe, D. B.; Zemach, C., A continuum method for modeling surface tension, J. Comput. Phys., 100, 335-354 (1992) · Zbl 0775.76110
[28] Pope, S. B., Turbulent Flows (2000), Cambridge University Press · Zbl 0966.76002
[29] William, C. L.; James, R. S., An analysis of practical RANS simulations for spinnaker aerodynamics, J. Wind. Eng. Ind. Aerodyn., 96, 143-165 (2008)
[30] Hou, Q. F.; Zou, Z. S., Comparison between standard and renormalization group k-\( \varepsilon\) models in numerical simulation of swirling flow tundish, ISIJ Int., 45, 325-330 (2005)
[31] Laurent, C.; Mary, I.; Gleize, V.; Lerat, A.; Arnal, D., DNS database of a transitional separation bubble on a flat plate and application to RANS modeling validation, Comput. Fluids, 61, 21-30 (2012) · Zbl 1365.76089
[32] Wilcox, D. C., Turbulence Modeling for CFD (2006), DCW Industries, Inc.: DCW Industries, Inc. La Canada, California
[33] Issa, R. I., Prediction of turbulent, stratified, two-phase flow in inclined pipes and channel, Int. J. Multiphas. Flow, 14, 141-154 (1988) · Zbl 0666.76077
[34] Ayati, A. A.; Kolaas, J.; Jensen, A.; Johnson, G. W., A PIV investigation of stratified gas-liquid flow in a horizontal pipe, Int. J. Multiphas. Flow, 61, 129-143 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.