×

A gradient weighted extended finite element method (GW-XFEM) for fracture mechanics. (English) Zbl 1428.74191

Summary: In this study, a gradient weighted extended finite element method (GW-XFEM) is presented for the analysis of fracture problems. For this method, the domain discretization is the same as the standard XFEM. However, the gradient field is constructed by considering the influences of the element itself and its adjacent elements. Based on the Shepard interpolation, the weighted strain filed can be obtained, which will be utilized to construct the discretized system equations. The validity of the presented method is fully investigated through several numerical examples. From these results, it is shown that compared with standard XFEM, the presented method can achieve much better accuracy, efficiency and higher convergence, when dealing with fracture analysis.

MSC:

74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics

Software:

XFEM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Menouillard, T., Belytschko, T.: Dynamic fracture with meshfree enriched XFEM. Acta Mech. 213, 53-69 (2008) · Zbl 1272.74604 · doi:10.1007/s00707-009-0275-z
[2] Spieler, C., Kaestner, M., Goldmann, J., Brummund, J., Ulbricht, V.: XFEM modeling and homogenization of magnetoactive composites. Acta Mech. 224, 2453-2469 (2013) · Zbl 1398.74406 · doi:10.1007/s00707-013-0948-5
[3] Wu, L., Liu, P., Shi, C., Zhang, Z., Bui, T.Q., Jiao, D.: Edge-based smoothed extended finite element method for dynamic fracture analysis. Appl. Math. Model. 40, 8564-8579 (2016) · Zbl 1471.74066 · doi:10.1016/j.apm.2016.05.027
[4] Areias, P., Rabczuk, T., Dias-da-Costa, D.: Element-wise fracture algorithm based on rotation of edges. Eng. Fract. Mech. 110, 113-137 (2013) · doi:10.1016/j.engfracmech.2013.06.006
[5] Bansal, M., Singh, I.V., Mishra, B.K., Sharma, K., Khan, I.A.: A stochastic XFEM model for the tensile strength prediction of heterogeneous graphite based on microstructural observations. J. Nucl. Mater. 487, 143-157 (2017) · doi:10.1016/j.jnucmat.2016.12.045
[6] Singh, S.K., Singh, I.V., Mishra, B.K., Bhardwaj, G., Bui, T.Q.: A simple, efficient and accurate Bézier extraction based T-spline XIGA for crack simulations. Theor. Appl. Fract. Mech. 88, 74-96 (2017) · doi:10.1016/j.tafmec.2016.12.002
[7] Agathos, K., Chatzi, E., Bordas, S., Talaslidis, D.: A well-conditioned and optimally convergent XFEM for 3D linear elastic fracture. Int. J. Numer. Methods Eng. 9, 643-677 (2016) · doi:10.1002/nme.4982
[8] Bordas, S., Duflot, M., Le, P.: A simple error estimator for extended finite elements. Commun. Numer. Methods Eng. 11, 961-971 (2008) · Zbl 1156.65093
[9] Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 602-620 (1999) · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[10] Moes, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131-150 (1999) · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[11] Ghorashi, S.S., Valizadeh, N., Mohammadi, S., Rabczuk, T.: T-spline based XIGA for fracture analysis of orthotropic media. Comput. Struct. 147, 138-146 (2015) · doi:10.1016/j.compstruc.2014.09.017
[12] Patil, R.U., Mishra, B.K., Singh, I.V.: A new multiscale XFEM for the elastic properties evaluation of heterogeneous materials. Int. J. Mech. Sci. 122, 277-287 (2017) · doi:10.1016/j.ijmecsci.2017.01.028
[13] Wang, Z., Yu, T.T., Bui, T.Q., Ngoc, Anh T., Nguyen-Thi, H.L., Nguyen-Dinh, D., Duc-Hong, D.: Numerical modeling of 3-D inclusions and voids by a novel adaptive XFEM. Adv. Eng. Softw. 102, 105-122 (2016) · doi:10.1016/j.advengsoft.2016.09.007
[14] Feng, S.Z., Li, W.: An accurate and efficient algorithm for the simulation of fatigue crack growth based on XFEM and combined approximations. Appl. Math. Model. 55, 600-615 (2018) · Zbl 1480.74271 · doi:10.1016/j.apm.2017.11.015
[15] Sutula, D., Kerfriden, P., Van Dam, T., Bordas, S.: Minimum energy multiple crack propagation. Part I: theory and state of the art review. Eng. Fract. Mech. 191, 205-224 (2017) · doi:10.1016/j.engfracmech.2017.07.028
[16] Sutula, D., Kerfriden, P., Van Dam, T., Bordas, S.: Minimum energy multiple crack propagation. Part-II: discrete solution with XFEM. Eng. Fract. Mech. 191, 225-256 (2017) · doi:10.1016/j.engfracmech.2017.07.029
[17] Sutula, D., Kerfriden, P., Van Dam, T., Bordas, S.: Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications. Eng. Fract. Mech. 191, 257-276 (2017) · doi:10.1016/j.engfracmech.2017.08.004
[18] Wu, S.C., Zhang, W.H., Peng, X., Miao, B.R.: A twice-interpolation finite element method (TFEM) for crack propagation problems. Int. J. Comput. Methods 9, 1250055 (2012) · Zbl 1359.74448 · doi:10.1142/S0219876212500557
[19] Bui, T.Q., Nguyen, D.D., Zhang, X.D., Hirose, S., Batra, R.C.: Analysis of 2-dimensional transient problems for linear elastic and piezoelectric structures using the consecutive-interpolation quadrilateral element (CQ4). Euro. J. Mech. A/Solids 58, 112-130 (2016) · Zbl 1406.74077 · doi:10.1016/j.euromechsol.2016.01.010
[20] Bui, T.Q., Vo, D.Q., Zhang, C.Z., Nguyen, D.D.: A consecutive-interpolation quadrilateral element (CQ4): formulation and applications. Finite Elem. Anal. Des. 84, 14-31 (2014) · doi:10.1016/j.finel.2014.02.004
[21] Kang, Z.Y., Bui, T.Q., Nguyen, D.D., Saitoh, T., Hirose, S.: An extended consecutive interpolation quadrilateral element (XCQ4) applied to linear elastic fracture mechanics. Acta Mech. 226, 3991-4015 (2015) · Zbl 1336.74010 · doi:10.1007/s00707-015-1451-y
[22] Kang, Z.Y., Bui, T.Q., Saitoh, T., Hirose, S.: Quasi-static crack propagation simulation by an enhanced nodal gradient finite element with different enrichments. Theor. Appl. Fract. Mech. 87, 61-77 (2017) · doi:10.1016/j.tafmec.2016.10.006
[23] Kang, Z.Y., Bui, T.Q., Nguyen, D.D., Hirose, S.: Dynamic stationary crack analysis of isotropic solids and anisotropic composites by enhanced local enriched consecutive-interpolation elements. Compos. Struct. 180, 221-233 (2017) · doi:10.1016/j.compstruct.2017.08.021
[24] Bui, T.Q., Nguyen, M.N., Nguyen, N.T., Truong, T.T., Lich, L.V.: Simulation of dynamic and static thermoelastic fracture problems by extended nodal gradient finite elements. Int. J. Mech. Sci. 134, 370-386 (2017) · doi:10.1016/j.ijmecsci.2017.10.022
[25] Yu, T.T., Bui, T.Q.: Numerical simulation of 2-D weak and strong discontinuities by a novel approach based on XFEM with local mesh refinement. Comput. Struct. 196, 112-133 (2018) · doi:10.1016/j.compstruc.2017.11.007
[26] Wang, Z., Yu, T.T., Bui, T.Q., Tanaka, S., Zhang, C.Z., Hirose, S., Curiel-Sosa, J.L.: 3-D local mesh refinement XFEM with variable-node hexahedron elements for extraction of stress intensity factors of straight and curved planar cracks. Comput. Methods Appl. Mech. Eng. 313, 375-405 (2017) · Zbl 1439.74374 · doi:10.1016/j.cma.2016.10.011
[27] Cui, X.Y., Li, Z.C., Feng, H., Feng, S.Z.: Steady and transient heat transfer analysis using a stable node-based smoothed finite element method. Int. J. Therm. Sci. 110, 12-25 (2016) · doi:10.1016/j.ijthermalsci.2016.06.027
[28] Hu, X.B., Cui, X.Y., Feng, H., Li, G.Y.: Stochastic analysis using the generalized perturbation stable node-based smoothed finite element method. Eng. Anal. Bound. Elem. 70, 40-55 (2016) · Zbl 1403.65137 · doi:10.1016/j.enganabound.2016.06.002
[29] Bordas, S., Rabczuk, T., Nguyen-Xuan, H., Nguyen-Vinh, P., Natarajan, S., Bog, T., Do-Minh, Q., Nguyen-Vinh, H.: Strain smoothing in FEM and XFEM. Comput. Struct. 88, 1419-1443 (2010) · doi:10.1016/j.compstruc.2008.07.006
[30] Chen, L., Rabczuk, T., Bordas, S., Liu, G.R., Zeng, K.Y., Kerfriden, P.: Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth. Comput. Methods Appl. Mech. Eng. 209, 250-265 (2012) · Zbl 1243.74170 · doi:10.1016/j.cma.2011.08.013
[31] Vu-Bac, N., Nguyen-Xuan, H., Chen, L., Bordas, S., Kerfriden, P., Simpson, R.N.: A node-based smoothed eXtended finite element method (NS-XFEM) for fracture analysis. Comput. Model. Eng. Sci. 73, 331-56 (2011) · Zbl 1231.74444
[32] Brodlie, K.W., Asim, M.R., Unsworth, K.: Constrained visualization using the Shepard interpolation family. Comput. Graph. Forum. 24, 809-820 (2005) · doi:10.1111/j.1467-8659.2005.00903.x
[33] Cui, X.Y., Hu, X., Wang, G., Li, G.Y.: An accurate and efficient scheme for acoustic-structure interaction problems based on unstructured mesh. Comput. Methods Appl. Mech. Eng. 317, 1122-1145 (2017) · Zbl 1439.74404 · doi:10.1016/j.cma.2017.01.022
[34] Sih, G.C.: Energy-density concept in fracture mechanics. Eng. Fract. Mech. 5, 1037-1040 (1973) · doi:10.1016/0013-7944(73)90072-6
[35] Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications. CRC Press, Boca Raton (1995) · Zbl 0999.74001
[36] Srawley, J.E.: Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens. Int. J. Fract. 12, 475-476 (1976)
[37] Wu, J., Cai, Y.C.: A partition of unity formulation referring to the NMM for multiple intersecting crack analysis. Theor. Appl. Fract. Mech. 72, 28-36 (2014) · doi:10.1016/j.tafmec.2014.07.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.