×

An efficient and parallel level set reinitialization method – application to micromechanics and microstructural evolutions. (English) Zbl 1443.74104

Summary: The paper introduces a new parallel and efficient algorithm for the reinitialization of level set functions on unstructured finite element (FE) meshes in two and three dimensions. The originality of this implementation lies in the use of a direct method enhanced by a \(k-d\) tree space partitioning technique. Different test cases illustrate the potential of the method for typical metallurgical and micromechanical problems with isotropic and anisotropic meshes. Comparison with other classical reinitialization methods, such as Hamilton-Jacobi formulations, proves that the proposed method guarantees optimal accuracy together with importantly reduced computational costs.

MSC:

74-10 Mathematical modeling or simulation for problems pertaining to mechanics of deformable solids
74S05 Finite element methods applied to problems in solid mechanics

Software:

GTEngine
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 1, 12-49, (1988) · Zbl 0659.65132
[2] Merriman, B.; Bence, J. K.; Osher, S., Motion of multiple junctions: a level set approach, J. Comput. Phys., 112, 2, 334-363, (1994) · Zbl 0805.65090
[3] Quan, D.-L.; Toulorge, T.; Marchandise, E.; Remacle, J.-F.; Bricteux, G., Anisotropic mesh adaptation with optimal convergence for finite elements using embedded geometries, Comput. Methods Appl. Mech. Eng., 268, 65-81, (2014) · Zbl 1295.74100
[4] Yazid, A.; Abdelkader, N.; Abdelmadjid, H., A state-of-the-art review of the X-FEM for computational fracture mechanics, Appl. Math. Modell., 33, 12, 4269-4282, (2009) · Zbl 1172.74050
[5] Bernacki, M.; Logé, R.; Coupez, T., Level set framework for the finite-element modelling of recrystallization and grain growth in polycrystalline materials, Scrip. Mater., 64, 6, 525-528, (2011)
[6] Hallberg, H., A modified level set approach to 2D modeling of dynamic recrystallization, Modell. Simul. Mater. Sci. Eng., 21, 8, 085012, (2013)
[7] Cruz-Fabiano, A.-L.; Logé, R.; Bernacki, M., Assessment of simplified 2D grain growth models from numerical experiments based on a level set framework, Comput. Mater. Sci., 92, 305-312, (2014)
[8] Bernacki, M.; Chastel, Y.; Coupez, T.; Logé, R., Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials, Scrip. Mater., 58, 12, 1129-1132, (2008)
[9] Sethian, J. A., A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci., 93, 4, 1591-1595, (1996) · Zbl 0852.65055
[10] Kimmel, R.; Sethian, J. A., Computing geodesic paths on manifolds, Proc. Natl. Acad. Sci., 95, 15, 8431-8435, (1998) · Zbl 0908.65049
[11] Sethian, J. A.; Vladimirsky, A., Fast methods for the eikonal and related Hamilton- Jacobi equations on unstructured meshes, Proc. Natl. Acad. Sci. USA, 97, 11, 5699-5703, (2000) · Zbl 0963.65076
[12] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114, 1, 146-159, (1994) · Zbl 0808.76077
[13] Elias, R. N.; Martins, M. A.D.; Coutinho, A. L.G. A., Simple finite element-based computation of distance functions in unstructured grids, Int. J. Numer. Methods Eng., 72, 9, 1095-1110, (2007) · Zbl 1194.65145
[14] Jones, M. W.; Baerentzen, J. A.; Sramek, M., 3D distance fields: a survey of techniques and applications, IEEE Trans. Visual. Comput. graphics, 12, 4, 581-599, (2006)
[15] Fortmeier, O.; Martin Bücker, H., Parallel re-initialization of level set functions on distributed unstructured tetrahedral grids, J. Comput. Phys., 230, 12, 4437-4453, (2011) · Zbl 1416.65330
[16] Eberly, D. H.; Schneider, P. J., Geometric tools for computer graphics, (2003), Kaufmann Morgan
[17] Bentley, J. L., Multidimensional binary search trees used for associative searching, Commun. ACM, 18, 9, 509-517, (1975) · Zbl 0306.68061
[18] Hachem, E.; Feghali, S.; Codina, R.; Coupez, T., Anisotropic adaptive meshing and monolithic variational multiscale method for fluid-structure interaction, Comput. Struct., 122, 88-100, (2013)
[19] Weck, A.; Wilkinson, D., Experimental investigation of void coalescence in metallic sheets containing laser drilled holes, Acta Mater., 56, 8, 1774-1784, (2008)
[20] Roux, E.; Shakoor, M.; Bernacki, M.; Bouchard, P.-O., A new finite element approach for modelling ductile damage void nucleation and growth-analysis of loading path effect on damage mechanisms, Modell. Simul. Mater. Sci. Eng., 22, 7, 075001, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.