×

Improved biogeography-based optimization with random ring topology and Powell’s method. (English) Zbl 1443.86008

Summary: Biogeography-based optimization (BBO) is a competitive population optimization algorithm based on biogeography theory with inherently insufficient exploration capability and slow convergence speed. To overcome limitations, we propose an improved variant of BBO, named PRBBO, for solving global optimization problems. In PRBBO, a hybrid migration operator with random ring topology, a modified mutation operator, and a self-adaptive Powell’s method are rational integrated together. The hybrid migration operator with random ring topology, denoted as RMO, is created by using local ring topology to replace global topology, which can avoid the asymmetrical migration operation and enhance potential population diversity. The self-adaptive Powell’s method is amended by using self-adaptive parameters for suiting evolution process to enhance solution precision quickly. Extensive experimental tests are carried out on 24 benchmark functions to show effectiveness of the proposed algorithm. Simulation results were compared with original BBO, ABC, DE, other variants of the BBO, and other state-of-the-art evolutionary algorithms. Finally, the effectiveness of operators on the performance of PRBBO is also discussed.

MSC:

86-10 Mathematical modeling or simulation for problems pertaining to geophysics
92-10 Mathematical modeling or simulation for problems pertaining to biology
90C59 Approximation methods and heuristics in mathematical programming

Software:

PSwarm; ABC; JADE; Krill herd
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bush, B. J.; Sayama, H., Hyperinteractive evolutionary computation, IEEE Trans. Evol. Comput., 15, 424-433 (2011)
[2] Mach, F.; Adam, L.; Kacerovský, J.; Karban, P.; Doležel, I., Evolutionary algorithm-based multi-criteria optimization of triboelectrostatic separator, J. Comput. Appl. Math., 270, 134-142 (2014) · Zbl 1374.78021
[3] Homayouni, S. M.; Tang, S. H.; Motlagh, O., A genetic algorithm for optimization of integrated scheduling of cranes, vehicles, and storage platforms at automated container terminals, J. Comput. Appl. Math., 270, 545-556 (2014) · Zbl 1319.90031
[4] Toledo, C. F.M.; Oliveira, L.; França, P. M., Global optimization using a genetic algorithm with hierarchically structured population, J. Comput. Appl. Math., 261, 341-351 (2014) · Zbl 1278.90479
[5] Mallipeddi, R.; Mallipeddi, S.; Suganthan, P. N., Ensemble strategies with adaptive evolutionary programming, Inf. Sci., 180, 1571-1581 (2010)
[6] Chen, G.; Low, C. P.; Yang, Z., Preserving and exploiting genetic diversity in evolutionary programming algorithms, IEEE Trans. Evol. Comput., 13, 661-673 (2010)
[7] Zhan, Z.-H.; Zhang, J.; Li, Y.; Shi, Y.-H., Orthogonal learning particle swarm optimization, IEEE Trans. Evol. Comput., 15, 832-847 (2011)
[8] Akbari, R.; Ziarati, K., A rank based particle swarm optimization algorithm with dynamic adaptation, J. Comput. Appl. Math., 235, 2694-2714 (2011) · Zbl 1209.65054
[9] Storn, R.; Price, K., Differential evolution—a simple and efficient heuristic for global optimization over continuous space, J. Global Optim., 11, 341-359 (1997) · Zbl 0888.90135
[10] Hu, Z. B.; Xiong, S. W.; Su, Q. H.; Fang, Z. X., Finite Markov chain analysis of classical differential evolution algorithm, J. Comput. Appl. Math., 268, 121-134 (2014) · Zbl 1293.65013
[11] Karaboga, D.; Basturk, B., A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Global Optim., 39, 459-471 (2007) · Zbl 1149.90186
[12] Gao, W.; Liu, S.; Huang, L., A global best artificial bee colony algorithm for global optimization, J. Comput. Appl. Math., 236, 2741-2753 (2012) · Zbl 1241.65058
[13] Costa, M. F.P.; Rocha, A. M.A. C.; Fernandes, E. M.G. P., An artificial fish swarm algorithm based hyperbolic augmented Lagrangian method, J. Comput. Appl. Math., 259, 868-876 (2014) · Zbl 1314.90077
[14] Layeb, A., A hybrid quantum inspired harmony search algorithm for 0-1 optimization problems, J. Comput. Appl. Math., 253, 14-25 (2013) · Zbl 1288.68073
[15] Simon, D., Biogeography-based optimization, IEEE Trans. Evol. Comput., 12, 702-713 (2008)
[16] Zheng, Y.; Wu, X.; Ling, H.; Chen, S., A simplified biogeography-based optimization using a ring topology, Adv. Swarm Intell., 7928, 330-337 (2013)
[17] Powell, M. J.D., Restart procedures for the conjugate gradient method, Math. Program., 12, 241-254 (1977) · Zbl 0396.90072
[18] Ma, H., An analysis of the equilibrium of migration models for biogeography-based optimization, Inf. Sci., 180, 3444-3464 (2010) · Zbl 1194.92073
[19] Ma, H.; Simon, D., Analysis of migration models of biogeography-based optimization using Markov theory, Eng. Appl. Artif. Intell., 24, 1052-1060 (2011)
[20] Gong, W.; Cai, Z.; Ling, C. X., A real-coded biogeography-based optimization with mutation, Appl. Math. Comput., 216, 2749-2758 (2010) · Zbl 1206.90221
[21] Ma, H.; Simon, D., Blended biogeography-based optimization for constrained optimization, Eng. Appl. Artif. Intell., 24, 517-525 (2011)
[22] Li, X.; Wang, J.; Zhou, J., A perturb biogeography based optimization with mutation for global numerical optimization, Appl. Math. Comput., 218, 598-609 (2011) · Zbl 1226.65055
[23] Li, X.; Yin, M., Multi-operator based biogeography based optimization with mutation for global numerical optimization, Comput. Math. Appl., 64, 2833-2844 (2012) · Zbl 1268.90150
[24] Lohokare, M. R.; Pattnaik, S. S.; Panigrahi, B. K.; Das, S., Accelerated biogeography-based optimization with neighborhood search for optimization, Appl. Soft Comput., 13, 2318-2342 (2013)
[25] Feng, Q.; Liu, S.; Tang, G.; Yong, L.; Zhang, J., Biogeography-based optimization with orthogonal crossover, Math. Problems Eng., 1-20 (2013), http://dx.doi.org/10.1155/2013/353969
[26] Xiong, G.; Shi, D.; Duan, X., Enhancing the performance of biogeography- based optimization using polyphyletic migration operator and orthogonal learning, Comput. Oper. Res., 41, 125-139 (2014) · Zbl 1348.90649
[27] Feng, Q.; Liu, S.; Wu, Q.; Tang, G. Q.; Chen, H., Modified biogeography-based optimization with local search mechanism, J. Appl. Math., 1-24 (2013), http://dx.doi.org/10.1155/2013/960524
[28] Gong, W.; Cai, Z.; Ling, C. X., DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization, Soft Comput., 15, 645-665 (2011)
[29] Boussaǐd, I.; Chatterjee, A.; Siarry, P.; Ahmed-Nacer, M., Two-stage update biogeography- based optimization using differential evolution algorithm, Comput. Oper. Res., 38, 1188-1219 (2011) · Zbl 1208.90195
[30] Li, X.; Yin, M., Hybrid artificial bee colony and biogeography based optimization for global numerical optimization, J. Comput. Theor. Nanosci., 10, 1156-1163 (2013)
[31] Wang, G.-G.; Gandomi, A. H.; Alavi, A. H., An effective krill herd algorithm with migration operator in biogeography-based optimization, Appl. Math. Modell., 38, 2454-2462 (2014) · Zbl 1427.90303
[32] Vaz, A. I.F.; Vicente, L. N., A particle swarm pattern search method for bound constrained global optimization, J. Global Optim., 39, 197-219 (2007) · Zbl 1180.90252
[33] Gao, W.-F.; Liu, S.-y.; Huang, L.-l., A novel artificial bee colony algorithm with Powell’s method, Appl. Soft Comput., 13, 3763-3775 (2013)
[34] Kramer, O., Iterated local search with Powell’s method: a memetic algorithm for continuous global optimization, Memetic Comput., 2, 69-83 (2010)
[35] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes in C—The Art of Scientific Computing (1997), Cambridge University Press
[36] Yao, X.; Liu, Y.; Lin, G., Evolutionary programming made faster, IEEE Trans. Evol. Comput., 3, 82-102 (1999)
[37] Kang, F.; Li, J.; Ma, Z., Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions, Inf. Sci., 181, 3508-3531 (2011) · Zbl 1242.65124
[38] Li, C.; Yang, S.; Nguyen, T. T., A self-learning particle swarm optimizer for global optimization problem, IEEE Trans. Syst. Man Cybern.—PART B: Cybern., 42, 627-646 (2012)
[39] Wang, H.; Rahnamayan, S.; Sun, H.; Omran, M. G.H., Gaussian bare-bones differential evolution, IEEE Trans. Cybern., 43, 634-647 (2013)
[40] Brest, J.; Greiner, S.; Boˇskovic´, B.; Mernik, M.; Zumer, V., Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems, IEEE Trans. Evol. Comput., 10, 646-657 (2006)
[41] Zhang, J.; Sanderson, A. C., JADE: adaptive differential evolution with optional external archive, IEEE Trans. Evol. Comput., 13, 945-958 (2009)
[42] Gong, W.; Cai, Z.; Jiang, L., Enhancing the performance of differential evolution using orthogonal design method, Appl. Math. Comput., 206, 56-69 (2008) · Zbl 1157.65384
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.