×

Automated inference of gene regulatory networks using explicit regulatory modules. (English) Zbl 1429.92075

Summary: Gene regulatory networks are a popular tool for modelling important biological phenomena, such as cell differentiation or oncogenesis. Efficient identification of the causal connections between genes, their products and regulating transcription factors, is key to understanding how defects in their function may trigger diseases. Modelling approaches should keep up with the ever more detailed descriptions of the biological phenomena at play, as provided by new experimental findings and technical improvements. In recent years, we have seen great improvements in mapping of specific binding sites of many transcription factors to distinct regulatory regions. Recent gene regulatory network models use binding measurements; but usually only to define gene-to-gene interactions, ignoring regulatory module structure. Moreover, current huge amount of transcriptomic data, and exploration of all possible cis-regulatory arrangements which can lead to the same transcriptomic response, makes manual model building both tedious and time-consuming.
In our paper, we propose a method to specify possible regulatory connections in a given Boolean network, based on transcription factor binding evidence. This is implemented by an algorithm which expands a regular Boolean network model into a “cis-regulatory” Boolean network model. This expanded model explicitly defines regulatory regions as additional nodes in the network, and adds new, valuable biological insights to the system dynamics. The expanded model can automatically be compared with expression data. And, for each node, a regulatory function, consistent with the experimental data, can be found. The resulting models are usually more constrained (by biologically-motivated metadata), and can then be inspected in in silico simulations.
The fully automated method for model identification has been implemented in Python, and the expansion algorithm in R. The method resorts to the Z3 satisfiability modulo theories (SMT) solver, and is similar to the RE:IN application [B. Yordanov et al., “A method to identify and analyze biological programs through automated reasoning”, NPJ Syst. Biol. Appl. 2, Article ID 16010, 16 p. (2016)].
It is available on https://github.com/regulomics/expansion-network.

MSC:

92C42 Systems biology, networks
92C40 Biochemistry, molecular biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abou-Jaoudé, W.; Monteiro, P. T.; Naldi, A.; Grandclaudon, M.; Soumelis, V.; Chaouiya, C.; Thieffry, D., Model checking to assess t-helper cell plasticity, Front. Bioeng. Biotechnol., 2 (2014)
[2] Ashenhurst, R. L., The decomposition of switching functions, Proceedings of an International Symposium on the Theory of Switching, April 1957 (1957) · Zbl 0201.48601
[3] Barolo, S., Shadow enhancers: frequently asked questions about distributed cis-regulatory information and enhancer redundancy, Bioessays, 34, 2, 135-141 (2012)
[4] Behaegel, J., Comet, J.-P., Folschette, M., 2016. A Hybrid Hoare Logic for Gene Network Models. arXiv preprint arXiv:1610.06715. · Zbl 1515.68158
[5] Bernot, G.; Comet, J.-P.; Khalis, Z., Gene regulatory networks with multiplexes, European simulation and modelling conference proceedings, 423-432 (2008)
[6] Bernot, G.; Comet, J.-P.; Richard, A.; Guespin, J., Application of formal methods to biological regulatory networks: extending thomasâ asynchronous logical approach with temporal logic, J. Theor. Biol., 229, 3, 339-347 (2004) · Zbl 1440.92036
[7] Bolouri, H.; Davidson, E. H., Modeling dna sequence-based cis-regulatory gene networks, Dev. Biol., 246, 1, 2-13 (2002)
[8] Clune, J.; Mouret, J.-B.; Lipson, H., The evolutionary origins of modularity, Proc. R. Soc. B, 280(1755), 20122863 (2013), The Royal Society
[9] Collombet, S.; van Oevelen, C.; Ortega, J. L.S.; Abou-Jaoudé, W.; Di Stefano, B.; Thomas-Chollier, M.; Graf, T.; Thieffry, D., Logical modeling of lymphoid and myeloid cell specification and transdifferentiation, Proc. Natl. Acad. Sci., 201610622 (2017)
[10] Crombach, A., Modelling the evolution of dynamic regulatory networks: some critical insights, Evolutionary Biology: Self/Nonself Evolution, Species and Complex Traits Evolution, Methods and Concepts, 257-273 (2017), Springer
[11] Curtis, H., A New Approach to the Design of Switching Circuits (1962), Van Nostrand
[12] Davidson, E. H., The Regulatory Genome: Gene Regulatory Networks in Development and Evolution (2010), Academic press
[13] Dubnicoff, T.; Valentine, S. A.; Chen, G.; Shi, T.; Lengyel, J. A.; Paroush, Z.; Courey, A. J., Conversion of dorsal from an activator to a repressor by the global corepressor groucho, GenesDev., 11, 22, 2952-2957 (1997)
[14] Dunn, S.-J.; Martello, G.; Yordanov, B.; Emmott, S.; Smith, A., Defining an essential transcription factor program for naive pluripotency, Science, 344, 6188, 1156-1160 (2014)
[15] Fages, F.; Martinez, T.; Rosenblueth, D. A.; Soliman, S., Influence systems vs reaction systems, International Conference on Computational Methods in Systems Biology, 98-115 (2016), Springer · Zbl 1382.92143
[16] Gallo, S. M.; Gerrard, D. T.; Miner, D.; Simich, M.; Des Soye, B.; Bergman, C. M.; Halfon, M. S., Redfly v3. 0: toward a comprehensive database of transcriptional regulatory elements in drosophila, Nucl. Acids Res., 39, suppl_1, D118-D123 (2010)
[17] Gunawardena, J., Models in biology: accurate descriptions of our pathetic thinkingâ, BMC Biol., 12, 1, 29 (2014)
[18] Kaderali, L.; Radde, N., Inferring gene regulatory networks from expression data, Computational Intelligence in Bioinformatics, 33-74 (2008), Springer
[19] Kauffman, S. A., Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theor. Biol., 22, 3, 437-467 (1969)
[20] Klamt, S.; Saez-Rodriguez, J.; Lindquist, J. A.; Simeoni, L.; Gilles, E. D., A methodology for the structural and functional analysis of signaling and regulatory networks, BMC Bioinform., 7, 1, 56 (2006)
[21] Klarner, H.; Streck, A.; Šafránek, D.; Kolčák, J.; Siebert, H., Parameter identification and model ranking of thomas networks, Computational Methods in Systems Biology, 207-226 (2012), Springer
[22] Krumsiek, J.; Marr, C.; Schroeder, T.; Theis, F. J., Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network, PloS one, 6, 8, e22649 (2011)
[23] Mengistu, H.; Huizinga, J.; Mouret, J.-B.; Clune, J., The evolutionary origins of hierarchy, PLoS Comput. Biol., 12, 6, e1004829 (2016)
[24] Naldi, A.; Berenguier, D.; Fauré, A.; Lopez, F.; Thieffry, D.; Chaouiya, C., Logical modelling of regulatory networks with ginsim 2.3, Biosystems, 97, 2, 134-139 (2009)
[25] Potvin, É.; Beuret, L.; Cadrin-Girard, J.-F.; Carter, M.; Roy, S.; Tremblay, M.; Charron, J., Cooperative action of multiple cis-acting elements is required for n-myc expression in branchial arches: specific contribution of gata3, Mol. Cel. Biol., 30, 22, 5348-5363 (2010)
[26] Ravasz, E.; Somera, A. L.; Mongru, D. A.; Oltvai, Z. N.; Barabási, A.-L., Hierarchical organization of modularity in metabolic networks, Science, 297, 5586, 1551-1555 (2002)
[27] Sanchez, L.; Thieffry, D., A logical analysis of the drosophila gap-gene system, J. Theor. Biol., 211, 2, 115-141 (2001)
[28] Sharov, A. A.; Dudekula, D. B.; Ko, M. S., Cisview: a browser and database of cis-regulatory modules predicted in the mouse genome, DNA Res., 13, 3, 123-134 (2006)
[29] Shavit, Y.; Yordanov, B.; Dunn, S.-J.; Wintersteiger, C. M.; Hamadi, Y.; Kugler, H., Switching gene regulatory networks, International Conference on Information Processing in Cells and Tissues, 131-144 (2015), Springer
[30] Staller, M. V.; Vincent, B. J.; Bragdon, M. D.; Lydiard-Martin, T.; Wunderlich, Z.; Estrada, J.; DePace, A. H., Shadow enhancers enable hunchback bifunctionality in the drosophila embryo, Proc. Natl. Acad. Sci., 112, 3, 785-790 (2015)
[31] Stoll, G.; Caron, B.; Viara, E.; Dugourd, A.; Zinovyev, A.; Naldi, A.; Kroemer, G.; Barillot, E.; Calzone, L., Maboss 2.0: an environment for stochastic boolean modeling, Bioinformatics, 33, 14, 2226-2228 (2017)
[32] Struffi, P.; Corado, M.; Kaplan, L.; Yu, D.; Rushlow, C.; Small, S., Combinatorial activation and concentration-dependent repression of the drosophila even skipped stripe 3+ 7 enhancer, Development, 138, 19, 4291-4299 (2011)
[33] Sugita, M., Functional analysis of chemical systems in vivo using a logical circuit equivalent. ii. the idea of a molecular automaton, J. Theor. Biol., 4, 2, 179-192 (1963)
[34] Thomas, R., Boolean formalization of genetic control circuits, J. Theor. Biol., 42, 3, 563-585 (1973)
[35] Thomas, R., Regulatory networks seen as asynchronous automata: a logical description, J. Theor. Biol., 153, 1, 1-23 (1991)
[36] Traynard, P.; Fauré, A.; Fages, F.; Thieffry, D., Logical model specification aided by model-checking techniques: application to the mammalian cell cycle regulation, Bioinformatics, 32, 17, i772-i780 (2016)
[37] Veitia, R. A., One thousand and one ways of making functionally similar transcriptional enhancers, Bioessays, 30, 11-12, 1052-1057 (2008)
[38] Vincent, B. J., Staller, M. V., Lopez-Rivera, F., Bragdon, M. D., Wunderlich, Z., Estrada, J., DePace, A. H., 2017. Caudal Counter-Represses Hunchback to Regulate Even-Skipped Stripe 2 Expression in Drosophila Embryos. bioRxiv, 226373.
[39] Wilczynski, B.; Furlong, E. E., Challenges for modeling global gene regulatory networks during development: insights from drosophila, Dev. Biol., 340, 2, 161-169 (2010)
[40] Wunderlich, Z.; Bragdon, M. D.; Vincent, B. J.; White, J. A.; Estrada, J.; DePace, A. H., Krüppel expression levels are maintained through compensatory evolution of shadow enhancers, Cell Rep., 12, 11, 1740-1747 (2015)
[41] Xiao, Y., A tutorial on analysis and simulation of boolean gene regulatory network models, Current Genom., 10, 7, 511-525 (2009)
[42] Yordanov, B.; Dunn, S.-J.; Kugler, H.; Smith, A.; Martello, G.; Emmott, S., A method to identify and analyze biological programs through automated reasoning, NPJ Syst. Biol. Appl., 2, 16010 (2016)
[43] Zinzen, R. P.; Girardot, C.; Gagneur, J.; Braun, M.; Furlong, E. E., Combinatorial binding predicts spatio-temporal cis-regulatory activity, Nature, 462, 7269, 65 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.