×

Multi-fidelity shape optimization of hydraulic turbine runner blades using a multi-objective mesh adaptive direct search algorithm. (English) Zbl 1446.76009

Summary: A robust multi-fidelity design optimization methodology has been developed to integrate advantages of high- and low-fidelity analyses, aiming to help designers reach more efficient turbine runners within reasonable computational time and cost. An inexpensive low-fidelity inviscid flow solver handles most of the computational burden by providing data to the optimizer by evaluating objective functions and constraint values in the low-fidelity phase. An open-source derivative-free optimizer, NOMAD, explores the search space, using the multi-objective mesh adaptive direct search optimization algorithm. A versatile filtering algorithm is in charge of connecting low- and high-fidelity phases by selecting among all feasible solutions a few promising solutions which are transferred to the high-fidelity phase. In the high-fidelity phase, a viscous flow solver is used outside the optimization loop to accurately evaluate filtered candidates. High-fidelity analyses results are used to recalibrate the low-fidelity optimization problem. The developed methodology has demonstrated its ability to efficiently redesign a Francis turbine blade for new operating conditions.

MSC:

76-10 Mathematical modeling or simulation for problems pertaining to fluid mechanics
90C29 Multi-objective and goal programming

Software:

NOMAD; OrthoMADS; GATE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Holmes, G.; McNabb, J. Y., Application of three-dimensional finite element potential flow analysis to hydraulic turbines, (Proceedings of International Symposium on Refined Modeling of Flows. Proceedings of International Symposium on Refined Modeling of Flows, Paris, France (1982))
[2] Franco-Nava, J. M.; Tamariz, E. R.; Gomez, O. D.; F-Davila, J. M.; R-Espinosa, R., CFD performance evaluation and runner blades design optimization in a Francis turbine, presented at the FEDSM 2009, (Proceedings of ASME 2009 Fluids Engineering Division Summer Meeting. Proceedings of ASME 2009 Fluids Engineering Division Summer Meeting, Colorado, USA (2009))
[3] Giannakoglou, K. C.; Papadimitriou, D. I.; Kampolis, I. C., Aerodynamic shape design using evolutionary algorithms and new gradient-assisted metamodels, Comput. Meth. Appl. Mech. Eng., 195, 6312-6329 (2006) · Zbl 1178.76310
[4] Mengistu, T.; Ghaly, W., Aerodynamic optimization of turbomachinery blades using evolutionary methods and ANN-based surrogate models, Optim. Eng., 9, 239-255 (2006) · Zbl 1300.76025
[5] Kuahai, Y.; Xi, Y.; Zhufeng, Y., Aerodynamic and heat transfer design optimization of internally cooling turbine blade based different surrogate models, Struct. Multidiscip. Optim., 44, 75-83 (2011)
[6] Georgopoulou, H.; Kyriacou, S.; Giannakoglou, K.; Grafenberger, P.; Parkinson, E., constrained multi-objective design optimization of hydraulic components using a hierarchical metamodel assisted evolutionary algorithm. Part 1: theory, (Proceedings of the 24th IAHR Symposium on Hydraulic Machinery and Systems, Foz do Iguassu. Proceedings of the 24th IAHR Symposium on Hydraulic Machinery and Systems, Foz do Iguassu, Brazil (2008))
[7] Badhurshah, R.; Samad, A., Multiple surrogate based optimization of a bidirectional impulse turbine for wave energy conversion, Renew. Energy, 74, 749-760 (2015)
[8] Vesting, F.; Bensow, R. E., On surrogate methods in propeller optimisation, Ocean Eng., 88, 214-227 (2014)
[9] Jameson, A.; Reuther, J., Control theory based airfoil design using euler equations, (Proceedings of AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Proceedings of AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama City Beach, USA (1994))
[10] Leary, S. J.; Bhaskar, A.; Keane, A. J., A knowledge-based approach to response surface modelling in multifidelity optimization, J. Global Optim., 26, 297-319 (2003) · Zbl 1116.90411
[11] Forrester, A. I.J.; Bressloff, N. W.; Keane, A. J., Optimization using surrogate models and partially converged computational fluid dynamics simulations, (Proceedings of the Royal Society of London, Series A (Mathematical, Physical and Engineering Sciences), vol. 462 (2006)), 2177-2204 · Zbl 1149.76656
[12] Alexandrov, N.; Lewis, R., An Overview of First-Order Model Management for Engineering Optimization, Optim. Eng., 2, 413-430 (2001) · Zbl 1079.90622
[13] Bandler, J. W.; Cheng, Q. S.; Dakroury, S. A.; Mohamed, A. S.; Bakr, M. H.; Madsen, K.; Sondergaard, J., Space mapping: the state of the art, IEEE Trans. Microw. Theory Tech., 52, 337-361 (2004)
[14] Leifsson, L.; Koziel, S., Variable-fidelity aerodynamic shape optimization, (Koziel, S.; Yang, X.-S., Computational Optimization, Methods and Algorithms, vol. 356 (2011), Springer: Springer Berlin Heidelberg), 179-210 · Zbl 1218.90012
[15] Booker, A. J.; Dennis, J. E.; Frank, P. D.; Serafini, D. B.; Torczon, V.; Trosset, M. W., A rigorous framework for optimization of expensive functions by surrogates, Struct. Optim., 17, 1-13 (1999)
[16] Robinson, T. D.; Eldred, M. S.; Willcox, K. E.; Haimes, R., Surrogate-based optimization using multifidelity models with variable parameterization and corrected space mapping, AIAA J., 46, 2814-2822 (2008)
[17] N.M. Alexandrov, R.M. Lewis, C.R. Gumbert, L.L. Green, P.A. Newman, Optimization with Variable-Fidelity Models Applied To Wing Design, NASA Langley Technical Report Server, 2000.; N.M. Alexandrov, R.M. Lewis, C.R. Gumbert, L.L. Green, P.A. Newman, Optimization with Variable-Fidelity Models Applied To Wing Design, NASA Langley Technical Report Server, 2000.
[18] Alexandrov, N.; Nielsen, E.; Lewis, R.; Anderson, W., First-order model management with variable-fidelity physics applied to multi-element airfoil optimization, (Proceedings of the 8th Symposium on Multidisciplinary Analysis and Optimization, ed: American Institute of Aeronautics and Astronautics (2000))
[19] Conn, A.; Gould, N.; Toint, P., Trust-region methods, (MPS-SIAM Series on Optimization) (2000) · Zbl 0958.65071
[20] Leifsson, L.; Koziel, S., Multi-fidelity design optimization of transonic airfoils using physics-based surrogate modeling and shape-preserving response prediction, J. Comput. Sci., 1, 98-106 (2010)
[21] Koziel, S., Efficient optimization of microwave circuits using shape-preserving response prediction, (Proceedings of IEEE MTT-S International Microwave Symposium Digest, MTT ’09 (2009)), 1569-1572
[22] Jameson, A.; Reuther, J., Control theory based airfoil design for potential flow and a finitie volume discretization, (Proceedings of AIAA 32nd Aerospace Sciences Meeting and Exhibit. Proceedings of AIAA 32nd Aerospace Sciences Meeting and Exhibit, Reno, Nevada (1994))
[23] Wu, J.; Shimmei, K.; Tani, K.; Sato, J.; Niikura, K., CFD-based design optimization for hydro turbines, J. Fluids Eng., 129, 159-168 (2006)
[24] Karakasis, M. K.; Koubogiannis, D. G.; Giannakoglou, K. C., Hierarchical distributed metamodel-assisted evolutionary algorithms in shape optimization, Int. J. Numer. Meth. Fluids, 53, 455-469 (2007) · Zbl 1107.65056
[25] Bahrami, S.; Tribes, C.; Devals, C.; Vu, T. C.; Guibault, F., Multi-objective optimization of runner blades using a multi-fidelity algorithm, (Proceedings of ASME 2013 Power Conference. Proceedings of ASME 2013 Power Conference, Boston, USA (2013)) · Zbl 1446.76009
[26] Le Digabel, S., Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm, ACM Trans. Math. Softw., 37 (2011), article 44 · Zbl 1365.65172
[27] M. Abramson, C. Audet, G. Couture, J. Dennis, S. Le Digabel, C. Tribes. The NOMAD Project. Available: http://www.gerad.ca/nomad; M. Abramson, C. Audet, G. Couture, J. Dennis, S. Le Digabel, C. Tribes. The NOMAD Project. Available: http://www.gerad.ca/nomad
[28] M.A. Abramson, C. Audet, J.E. Dennis Jr., S. Le Digabel, ORTHOMADS: A deterministic MADS instance with orthogonal directions, SIAM J. Optim. vol. 20, (2009), pp. 948-966.; M.A. Abramson, C. Audet, J.E. Dennis Jr., S. Le Digabel, ORTHOMADS: A deterministic MADS instance with orthogonal directions, SIAM J. Optim. vol. 20, (2009), pp. 948-966. · Zbl 1189.90202
[29] Audet, C.; Dennis, J. E., A progressive barrier for derivative-free nonlinear programming, SIAM J. Optim., 20, 445-472 (2009) · Zbl 1187.90266
[30] Gheribi, A. E.; Le Digabel, S.; Audet, C.; Chartrand, P., Identifying optimal conditions for magnesium based alloy design using the Mesh adaptive direct search algorithm, Thermochim. Acta, 559, 107-110 (2013)
[31] Audet, C.; Diest, K.; Le Digabel, S.; Sweatlock, L.; Marthaler, D., Metamaterial design by Mesh adaptive direct search, Numerical Methods for Metamaterial Design, vol. 127, 71-96 (2013), Springer: Springer Netherlands
[32] Hare, W.; Nutini, J.; Tesfamariam, S., A survey of non-gradient optimization methods in structural engineering, Adv. Eng. Softw., 59, 19-28 (2013)
[33] S. Le Digabel, C. Tribes, C. Audet, NOMAD User Guide, 2013.; S. Le Digabel, C. Tribes, C. Audet, NOMAD User Guide, 2013.
[34] Audet, C.; Béchard, V.; Le Digabel, S., Nonsmooth optimization through Mesh adaptive direct search and variable neighborhood search, J. Global Optim., 41, 299-318 (2008) · Zbl 1157.90535
[35] Audet, C.; Savard, G.; Zghal, W., Multiobjective optimization through a series of single-objective formulations, SIAM J. Optim., 19, 188-210 (2008) · Zbl 1167.90020
[36] Audet, C.; Savard, G.; Zghal, W., A mesh adaptive direct search algorithm for multiobjective optimization, Eur. J. Oper. Res., 204, 545-556 (2010) · Zbl 1181.90137
[37] Yang, X.-S., Introduction to Mathematical Optimization (2008), International Science Publishing: International Science Publishing Cambridge · Zbl 1159.90004
[38] Postaire, J. G.; Zhang, R. D.; Lecocq-Botte, C., Cluster analysis by binary morphology, IEEE Trans. Pattern Anal. Mach. Intell>, 15, 170-180 (1993)
[39] Dominique, S.; Trépanier, J. Y.; Tribes, C., GATE: a genetic algorithm designed for expensive cost functions, Int. J. Math. Modell. Numer. Optim., 3, 5-29 (2012) · Zbl 1244.65080
[40] Nilsson, H.; Davidson, L., Validations of CFD against detailed velocity and pressure measurements in water turbine runner flow, Int. J. Numer. Meth. Fluids, 41, 863-879 (2003) · Zbl 1018.76516
[41] Zhang, M.-L.; Li, C. W.; Shen, Y. M., A 3D non-linear k-ε turbulent model for prediction of flow and mass transport in channel with vegetation, Appl. Math. Modell., 34, 1021-1031 (2010) · Zbl 1185.76717
[42] Gauthier, M., StageX Package (2012), Andritz Hydro Canada Inc.
[43] Vu, T. C.; Devals, C.; Ying, Z.; Nennemann, B.; Guibault, F., Steady and unsteady flow computation in an elbow draft tube with experimental validation, Int. J. Fluid Mach. Syst., 4, 84-95 (2010)
[44] Vu, T. C.; Gauthier, M.; Nennemann, B.; Koller, M.; Deschenes, C., Flow simulation for a propeller turbine with different runner blade geometries, (Proceedings of the 26th IAHR Symposium on Hydraulic Machinery and Systems. Proceedings of the 26th IAHR Symposium on Hydraulic Machinery and Systems, Beijing, China (2012))
[45] Susan-Resiga, R.; Muntean, S.; Stein, P.; Avellan, F., Axisymmetric swirling flow simulation of the draft tube vortex in Francis turbines at partial discharge, (Proceedings of the 24th Symposium on Hydraulic Machinery and Systems. Proceedings of the 24th Symposium on Hydraulic Machinery and Systems, Brazil (2008))
[46] Tridon, S.; Barre, S.; Ciocan, G. D.; Tomas, L., Experimental analysis of the swirling flow in a Francis turbine draft tube: Focus on radial velocity component determination, Eur. J. Mech. B/Fluids, 29, 321-335 (2010) · Zbl 1193.76013
[47] Murry, N., Xmt Overview (2010), Andritz Hydro Canada Inc.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.