×

Deep learning the hyperbolic volume of a knot. (English) Zbl 1430.57001

Summary: An important conjecture in knot theory relates the large-\(N\), double scaling limit of the colored Jones polynomial \(J_{K, N}(q)\) of a knot \(K\) to the hyperbolic volume of the knot complement, \(\operatorname{Vol}(K)\). A less studied question is whether \(\operatorname{Vol}(K)\) can be recovered directly from the original Jones polynomial \((N = 2)\). In this report, we use a deep neural network to approximate \(\operatorname{Vol}(K)\) from the Jones polynomial. Our network is robust and correctly predicts the volume with 97.6% accuracy when training on 10% of the data. This points to the existence of a more direct connection between the hyperbolic volume and the Jones polynomial.

MSC:

57-08 Computational methods for problems pertaining to manifolds and cell complexes
57K14 Knot polynomials
68T07 Artificial neural networks and deep learning

Software:

SnapPy; Mathematica
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] The knot atlas (2015)
[2] Mathematica 11.3.0.0 (2018), Wolfram Research Inc.
[3] Ashley, C., The Ashley Book of Knots (1944), Doubleday: Doubleday New York
[4] Balasubramanian, V.; DeCross, M.; Fliss, J.; Kar, A.; Leigh, R. G.; Parrikar, O., Entanglement entropy and the colored Jones polynomial, J. High Energy Phys., 05, Article 038 pp. (2018) · Zbl 1391.81177
[5] Balasubramanian, V.; Fliss, J. R.; Leigh, R. G.; Parrikar, O., Multi-boundary entanglement in Chern-Simons theory and link invariants, J. High Energy Phys., 04, Article 061 pp. (2017) · Zbl 1378.81061
[6] Bar-Natan, D., On Khovanov’s categorification of the Jones polynomial, Algebraic Geom. Topol., 2, 337-370 (2002) · Zbl 0998.57016
[7] Bull, K.; He, Y.-H.; Jejjala, V.; Mishra, C., Machine learning CICY threefolds, Phys. Lett. B, 785, 65-72 (2018)
[8] Carifio, J.; Halverson, J.; Krioukov, D.; Nelson, B. D., Machine learning in the string landscape, J. High Energy Phys., 09, Article 157 pp. (2017) · Zbl 1382.81155
[9] Cooper, D.; Culler, M.; Gillet, H.; Long, D.; Shalen, P., Plane curves associated to character varieties of 3-manifolds, Invent. Math., 118, 47-84 (01 1994) · Zbl 0842.57013
[10] Culler, M.; Dunfield, N. M.; Goerner, M.; Weeks, J. R., SnapPy, a computer program for studying the geometry and topology of 3-manifolds (2018)
[11] Cybenko, G., Approximation by superpositions of a sigmoidal function, Math. Control Signals Syst., 2, 4, 303-314 (Dec 1989) · Zbl 0679.94019
[12] Dasbach, O.; Lin, X.-S., A volumish theorem for the Jones polynomial of alternating knots, Pac. J. Math., 231, 2, 279-291 (Jun 2007) · Zbl 1166.57002
[13] Dunfield, N., An interesting relationship between the Jones polynomial and hyperbolic volume (2000)
[14] Gopakumar, R.; Vafa, C., On the gauge theory / geometry correspondence, Adv. Theor. Math. Phys.. Adv. Theor. Math. Phys., AMS/IP Stud. Adv. Math., 23, 45-1443 (2001) · Zbl 1026.81029
[15] Gukov, S., Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial, Commun. Math. Phys., 255, 3, 577-627 (Mar 2005) · Zbl 1115.57009
[16] He, Y.-H., Machine-learning the string landscape, Phys. Lett. B, 774, 564-568 (2017)
[17] Horner, K. E.; Miller, M. A.; Steed, J. W.; Sutcliffe, P. M., Knot theory in modern chemistry, Chem. Soc. Rev., 45, 6432-6448 (2016)
[18] Hughes, M. C., A Neural Network Approach to Predicting and Computing Knot Invariants (2016)
[19] Jablan, S.; Radović, L.; Sazdanović, R.; Zeković, A., Knots in art, Symmetry, 4, 2, 302-328 (2012-6-05) · Zbl 1352.00023
[20] Jones, V. F.R., Hecke algebra representations of braid groups and link polynomials, Ann. Math., 126, 2, 335 (Sep 1987) · Zbl 0631.57005
[21] Jones, V. F.R., Knot theory and statistical mechanics, Sci. Am., 263, 5, 98-105 (1990)
[22] Kashaev, R. M., The hyperbolic volume of knots from quantum dilogarithm, Lett. Math. Phys., 39, 3, 269-275 (1997) · Zbl 0876.57007
[23] Kauffman, L. H., State models and the Jones polynomial, Topology, 26, 3, 395-407 (1987) · Zbl 0622.57004
[24] Khovanov, M., A categorification of the Jones polynomial, Duke Math. J., 101, 3, 359-426 (02 2000) · Zbl 0960.57005
[25] Khovanov, M., Patterns in knot cohomology, I, Exp. Math., 12, 3, 365-374 (2003) · Zbl 1073.57007
[26] Krefl, D.; Seong, R.-K., Machine learning of Calabi-Yau volumes, Phys. Rev. D, 96, 6, Article 066014 pp. (2017)
[27] LeCun, Y.; Bengio, Y.; Hinton, G., Deep learning, Nature, 521, 7553, 436-444 (May 2015)
[28] Murakami, H.; Murakami, J., The colored Jones polynomials and the simplicial volume of a knot, Acta Math., 186, 1, 85-104 (2001) · Zbl 0983.57009
[29] Ooguri, H.; Vafa, C., Knot invariants and topological strings, Nucl. Phys. B, 577, 419-438 (2000) · Zbl 1036.81515
[30] Ruehle, F., Evolving neural networks with genetic algorithms to study the string landscape, J. High Energy Phys., 08, Article 038 pp. (2017) · Zbl 1381.83128
[31] Sumners, D. W., Lifting the curtain: using topology to probe the hidden action of enzymes, Not. Am. Math. Soc., 42, 528-537 (1995) · Zbl 1003.92515
[32] Thurston, W. P., Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Am. Math. Soc. (N.S.), 6, 3, 357-381 (05 1982) · Zbl 0496.57005
[33] Valiant, L. G., A theory of the learnable, Commun. ACM, 27, 11, 1134-1142 (1984) · Zbl 0587.68077
[34] Witten, E., Quantum field theory and the Jones polynomial, Commun. Math. Phys., 121, 3, 351-399 (1989) · Zbl 0667.57005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.