×

Numerical solution of multi-order fractional differential equations with multiple delays via spectral collocation methods. (English) Zbl 1480.65158

Summary: This paper discusses a general framework for the numerical solution of multi-order fractional delay differential equations (FDDEs) in noncanonical forms with irrational/rational multiple delays by the use of a spectral collocation method. In contrast to the current numerical methods for solving fractional differential equations, the proposed framework can solve multi-order FDDEs in a noncanonical form with incommensurate orders. The framework can also solve multi-order FDDEs with irrational multiple delays. Next, the framework is enhanced by the fractional Chebyshev collocation method in which a Chebyshev operation matrix is constructed for the fractional differentiation. Spectral convergence and small computational time are two other advantages of the proposed framework enhanced by the fractional Chebyshev collocation method. In addition, the convergence, error estimates, and numerical stability of the proposed framework for solving FDDEs are studied. The advantages and computational implications of the proposed framework are discussed and verified in several numerical examples.

MSC:

65L03 Numerical methods for functional-differential equations
34K37 Functional-differential equations with fractional derivatives
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Machado, J. T., Fractional order description of dna, Appl. Math. Model., 39, 14, 4095-4102 (2015) · Zbl 1443.92142
[2] Machado, J. T.; Lopes, A. M., A fractional perspective on the trajectory control of redundant and hyper-redundant robot manipulators, Appl. Math. Model. (2016) · Zbl 1443.70014
[3] Kumar, S., A new analytical modelling for fractional telegraph equation via laplace transform, Appl. Math. Model., 38, 13, 3154-3163 (2014) · Zbl 1427.35327
[4] Hilfer, R., Applications of Fractional Calculus in Physics (2000), World Scientific · Zbl 0998.26002
[5] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Gordon & Breach Sci. Publishers · Zbl 0818.26003
[6] Heymans, N.; Bauwens, J.-C., Fractal rheological models and fractional differential equations for viscoelastic behavior, Rheologica Acta, 33, 3, 210-219 (1994)
[7] Das, S., Functional Fractional Calculus (2011), Springer · Zbl 1225.26007
[8] Bagley, R. L.; Torvik, P. J., On the fractional calculus model of viscoelastic behavior, J. Rheol., 30, 1, 133-155 (1986) · Zbl 0613.73034
[9] Stepan, G., Delay effects in the human sensory system during balancing, Phil. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci., 367, 1891, 1195-1212 (2009) · Zbl 1185.92010
[10] Boukal, Y.; Zasadzinski, M.; Darouach, M.; Radhy, N.-E., Robust functional observer design for uncertain fractional-order time-varying delay systems, Proceedings of the American Control Conference, ACC’2016 (2016) · Zbl 1320.94012
[11] Wang, Z.; Huang, X.; Zhou, J., A numerical method for delayed fractional-order differential equations: based on GL definition, Appl. Math. Inf. Sci., 7, 2L, 525-529 (2013)
[12] Butcher, E. A.; Dabiri, A.; Nazari, M., Transition curve analysis of linear fractional periodic time-delayed systems via explicit harmonic balance method, J. Comput. Nonlinear Dyn., 11, 4, 041005 (2016)
[13] Trefethen, L. N., Spectral Methods in MATLAB, Vol. 10 (2000), SIAM · Zbl 0953.68643
[14] Boyd, J. P., Chebyshev and Fourier Spectral Methods (2001), Courier Corporation · Zbl 0994.65128
[15] Diethelm, K.; Ford, N. J.; Freed, A. D., A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29, 1-4, 3-22 (2002) · Zbl 1009.65049
[16] Moghaddam, B.; Machado, J., A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations, Comput. Math. Appl. (2016)
[17] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J., Fractional Calculus: Models and Numerical Methods, Vol. 5 (2016), World Scientific
[18] Ma, X.; Huang, C., Spectral collocation method for linear fractional integro-differential equations, Appl. Math. Model., 38, 4, 1434-1448 (2014) · Zbl 1427.65421
[19] Ameen, I.; Novati, P., The solution of fractional order epidemic model by implicit adams methods, Appl. Math. Model., 43, 78-84 (2017) · Zbl 1446.92004
[20] Liu, F.; Zhuang, P.; Turner, I.; Burrage, K.; Anh, V., A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model., 38, 15, 3871-3878 (2014) · Zbl 1429.65213
[21] Ding, H.; Li, C., Fractional-compact numerical algorithms for Riesz spatial fractional reaction-dispersion equations, Fract. Calcul. Appl. Anal., 20, 3, 722-764 (2017) · Zbl 1365.65194
[22] Ding, H.; Li, C., High-order algorithms for Riesz derivative and their applications (iii), Fract. Calcul. Appl. Anal., 19, 1, 19-55 (2016) · Zbl 1332.65122
[23] Ding, H.; Li, C.; Chen, Y., High-order algorithms for Riesz derivative and their applications (ii), J. Comput. Phys., 293, 218-237 (2015) · Zbl 1349.65284
[24] Li, C.; Zeng, F., Numerical Methods for Fractional Calculus, Vol. 24 (2015), CRC Press · Zbl 1326.65033
[25] Moghaddam, B. P.; Machado, J. A.T., A computational approach for the solution of a class of variable-order fractional integro-differential equations with weakly singular kernels, Fract. Calcul. Appl. Anal., 20, 4, 1023-1042 (2017) · Zbl 1376.65159
[26] Moghaddam, B.; Machado, J.; Behforooz, H., An integro quadratic spline approach for a class of variable-order fractional initial value problems, Chaos Solitons Fractals (2017) · Zbl 1422.65131
[27] Yaghoobi, S.; Moghaddam, B. P.; Ivaz, K., An efficient cubic spline approximation for variable-order fractional differential equations with time delay, Nonlinear Dyn., 87, 2, 815-826 (2017) · Zbl 1372.34125
[28] Dabiri, A.; Butcher, E. A., Efficient modified Chebyshev differentiation matrices for fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 50 (2017) · Zbl 1390.34017
[29] Dabiri, A.; Butcher, E. A., Stable fractional Chebyshev differentiation matrix for numerical solution of fractional differential equations, Nonlinear Dyn., 90, 1, 185-201 (2017) · Zbl 1390.34017
[30] Mokhtary, P.; Ghoreishi, F.; Srivastava, H., The Müntz-egendre Tau method for fractional differential equations, Appl. Math. Model., 40, 2, 671-684 (2016) · Zbl 1446.65041
[31] Keshavarz, E.; Ordokhani, Y.; Razzaghi, M., Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Model., 38, 24, 6038-6051 (2014) · Zbl 1429.65170
[32] Bhrawy, A.; Zaky, M., Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations, Appl. Math. Model., 40, 2, 832-845 (2016) · Zbl 1446.34011
[33] Saadatmandi, A., Bernstein operational matrix of fractional derivatives and its applications, Appl. Math. Model., 38, 4, 1365-1372 (2014) · Zbl 1427.65134
[34] Li, C.; Yi, Q.; Chen, A., Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J. Comput. Phys., 316, 614-631 (2016) · Zbl 1349.65246
[35] Li, C.; Zeng, F., The finite difference methods for fractional ordinary differential equations, Numer. Funct. Anal. Optim., 34, 2, 149-179 (2013) · Zbl 1267.65094
[36] Hwang, C.; Cheng, Y.-C., A numerical algorithm for stability testing of fractional delay systems, Automatica, 42, 5, 825-831 (2006) · Zbl 1137.93375
[37] Busłowicz, M., Stability of linear continuous-time fractional order systems with delays of the retarded type, Bull. Polish Acad. Sci. Tech. Sci., 56, 4 (2008)
[38] Morgado, M. L.; Ford, N. J.; Lima, P., Analysis and numerical methods for fractional differential equations with delay, J. Comput. Appl. Math., 252, 159-168 (2013) · Zbl 1291.65214
[39] Bhalekar, S.; Daftardar-Gejji, V., A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, J. Fract. Calcul. Appl., 1, 5, 1-9 (2011) · Zbl 1488.65209
[40] Moghaddam, B. P.; Yaghoobi, S.; Machado, J. T., An extended predictor-corrector algorithm for variable-order fractional delay differential equations, J. Comput. Nonlinear Dyn. (2016)
[41] Saeed, U., Hermite wavelet method for fractional delay differential equations, J. Differ. Equ., 2014 (2014)
[42] Zheng, M.; Liu, F.; Anh, V.; Turner, I., A high-order spectral method for the multi-term time-fractional diffusion equations, Appl. Math. Model., 40, 7, 4970-4985 (2016) · Zbl 1459.65205
[43] Mokhtary, P.; Ghoreishi, F., The l 2-convergence of the Legendre spectral tau matrix formulation for nonlinear fractional integro differential equations, Numer. Algorithms, 58, 4, 475-496 (2011) · Zbl 1270.65078
[44] Maleknejad, K.; Nouri, K.; Torkzadeh, L., Operational matrix of fractional integration based on the shifted second kind Chebyshev polynomials for solving fractional differential equations, Mediterranean J. Math., 13, 3, 1377-1390 (2016) · Zbl 1350.26015
[45] Ghoreishi, F.; Yazdani, S., An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis, Comput. Math. Appl., 61, 1, 30-43 (2011) · Zbl 1207.65108
[46] Li, Z.; Liu, L.; Dehghan, S.; Chen, Y.; Xue, D., A review and evaluation of numerical tools for fractional calculus and fractional order controls, Int. J. Control, 1-17 (2016)
[47] Podlubny, I.; Petráš, I.; Skovranek, T.; Terpák, J., Toolboxes and programs for fractional-order system identification, modeling, simulation, and control, Proceedings of the 2016 Seventeenth International Carpathian Control Conference (ICCC), 608-612 (2016), IEEE
[48] Tepljakov, A.; Petlenkov, E.; Belikov, J., FOMCON: a MATLAB toolbox for fractional-order system identification and control, Int. J. Microelectron. Comput. Sci., 2, 2, 51-62 (2011)
[49] Chen, Y.; Petras, I.; Xue, D., Fractional order control-a tutorial, Proceedings of the American Control Conference, 2009. ACC’09., 1397-1411 (2009), IEEE
[50] A. Dabiri, Guide to FCC: Stability and solution of linear time variant fractional differential equations with spectral convergence using the FCC toolbox package in MATLAB, 2017, (http://u.arizona.edu/ armandabiri/fcc.html; A. Dabiri, Guide to FCC: Stability and solution of linear time variant fractional differential equations with spectral convergence using the FCC toolbox package in MATLAB, 2017, (http://u.arizona.edu/ armandabiri/fcc.html
[51] Butcher, E. A.; Dabiri, A.; Nazari, M., Stability and control of fractional periodic time-delayed systems, (Insperger, T.; Ersal, T.; Orosz, G., Time Delay Systems: Theory, Numerics, Applications, and Experiments, Vol. 7 (2017), Springer: Springer New York), 107-125 · Zbl 1387.34109
[52] Shampine, L. F.; Thompson, S., Solving ddes in matlab, Applied Numerical Mathematics, 37, 4, 441-458 (2001) · Zbl 0983.65079
[53] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Vol. 204 (2006), Elsevier Science Inc.: Elsevier Science Inc. New York, NY · Zbl 1092.45003
[54] Caputo, M.; Mainardi, F., A new dissipation model based on memory mechanism, Pure Appl. Geophys., 91, 1, 134-147 (1971) · Zbl 1213.74005
[55] Dabiri, A.; Butcher, E. A.; Nazari, M., Coefficient of restitution in fractional viscoelastic compliant impacts using fractional Chebyshev collocation, J. Sound Vib., 388, 230-244 (2017)
[56] Herrmann, G., Stability of equilibrium of elastic systems subjected to nonconservative forces (stability of equilibrium of elastic systems under nonconservative load, discussing criteria of stability, modes of instability, follower force problems, etc), Appl. Mech. Rev., 20, 103-108 (1967)
[57] Bogdanov, A., Optimal control of a double inverted pendulum on a cart, Technical Report CSE-04-006 (2004), Oregon Health and Science University, OGI School of Science and Engineering, Beaverton, OR
[58] Tavakoli-Kakhki, M.; Haeri, M., The minimal state space realization for a class of fractional order transfer functions, SIAM J. Control Optim., 48, 7, 4317-4326 (2010) · Zbl 1222.26014
[59] Tavakoli-Kakhki, M.; Haeri, M.; Tavazoei, M. S., Notes on the state space realizations of rational order transfer functions, IEEE Trans. Circ. Syst. I Regul Papers, 58, 5, 1099-1108 (2011) · Zbl 1468.93060
[60] Tavazoei, M. S.; Tavakoli-Kakhki, M., Minimal realizations for some classes of fractional order transfer functions, IEEE J. Emerg. Sel. Top. Circ. Syst., 3, 3, 313-321 (2013)
[61] Dabiri, A.; Butcher, E. A.; Poursina, M.; Nazari, M., Optimal periodic-gain fractional delayed state feedback control for linear fractional periodic time-delayed systems, IEEE Trans. Autom. Control (2017) · Zbl 1390.93324
[62] Matignon, D., Stability results for fractional differential equations with applications to control processing, Proceedings of the Computational Engineering in Systems Applications, Vol. 2, 963-968 (1996), IMACS, IEEE-SMC Lille, France
[63] Canuto, C.; Hussaini, M.; Quarteroni, A.; Zang, T., Spectral Methods: Fundamentals in Single Domains (2007), Springer-Verlag Berlin Heidelberg
[64] De Boor, C., A Practical Guideto Splines, Vol. 27 (1978), Springer-Verlag: Springer-Verlag New York · Zbl 0406.41003
[65] Dabiri, A.; Nazari, M.; Butcher, E. A., Chaos analysis and control in fractional-order systems using fractional Chebyshev collocation method, Proceedings of the ASME 2016 International Mechanical Engineering Congress & Exposition (IMECE) (2016)
[66] Diethelm, K.; Freed, A. D., The FracPECE subroutine for the numerical solution of differential equations of fractional order, Forschung und wissenschaftliches Rechnen, 1999, 57-71 (1998)
[67] Diethelm, K., An algorithm for the numerical solution of differential equations of fractional order, Electron. Trans. Numer. Anal., 5, 1, 1-6 (1997) · Zbl 0890.65071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.