×

Compressed algebraic cubature over polygons with applications to optical design. (English) Zbl 1493.65055

Summary: In this paper we propose an algorithm to determine cubature rules of algebraic degree of exactness \(\delta\) on general polygons \(\mathcal{P}\), by means of Matlab objects and near minimal rules on triangles, obtaining by Caratheodory-Tchakaloff subsampling a PI (Positive Interior) final formula with cardinality at most \(N_\delta = (\delta + 1)(\delta + 2) / 2\). We test our algorithm on polygons with different shape, and we also discuss an application to the computation of the RMSWE (Root Mean Square Wavefront Error) on obscured and vignetted pupils, in the framework of optical design by numerical ray tracing for the LSST (Large Synoptic Survey Telescope).

MSC:

65D32 Numerical quadrature and cubature formulas
41A55 Approximate quadratures
41A63 Multidimensional problems
78M99 Basic methods for problems in optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Piazzon, F.; Sommariva, A.; Vianello, M., Caratheodory-Tchakaloff subsampling, Dolomit. Res. Notes Approx. DRNA, 10, 5-14 (2017) · Zbl 1370.94399
[2] Sommariva, A.; Vianello, M., Compression of multivariate discrete measures and applications, Numer. Funct. Anal. Optim., 36, 1198-1223 (2015) · Zbl 1327.41006
[3] Bauman, B.; Xiao, H., Gaussian quadrature for optical design with noncircular pupils and fields, and broad wavelength range, Proc. SPIE, 7652, 2, 1-12 (2010)
[4] Olivier, S. S.; Seppala, L.; Gilmore, K., Optical design of the LSST camera, Proc. SPIE, 7018 (2008)
[5] Sommariva, A.; Vianello, M., Product Gauss cubature over polygons based on Green’s integration formula, BIT Numer. Math., 47, 441-453 (2007) · Zbl 1122.65027
[6] Keil, J. M., Polygon decomposition, (Sack, J.-R.; Urrutia, J., Handbook of Computational Geometry (2000), Elsevier), 491-518, (Chapter 11) · Zbl 0948.68189
[7] Chazelle, B., Triangulating a simple polygon in linear time, Discrete Comput. Geom., 6, 485-524 (1991) · Zbl 0753.68090
[8] S. Suri, Polygon triangulation, https://www.cs.ucsb.edu/suri/cs235/Triangulation.pdf.
[9] Mathworks, Polyshape documentation, available from Matlab R2017b and online at: https://it.mathworks.com/help/matlab/ref/polyshape.html.
[10] Cools, R., Constructing cubature formulae: the science behind the art, Acta Numer., 6, 1-54 (1997) · Zbl 0887.65028
[11] Taylor, M. A.; Wingate, B. A.; Bos, L. P., A cardinal function algorithm for computing multivariate quadrature points, SIAM J. Numer. Anal., 45, 1, 193-205 (2007) · Zbl 1142.65028
[12] Lyness, J. N.; Jespersen, D., Moderate degree symmetric quadrature rules for the triangle, J. Inst. Math. Appl., 15, 19-32 (1975) · Zbl 0297.65018
[13] Papanicolopulos, S.-A., New fully symmetric and rotationally symmetryc cubature rules on the triangle using minimal orthonormal bases, J. Comput. Appl. Math., 294, 39-48 (2016) · Zbl 1327.65046
[14] Xiao, H.; Gimbutas, Z., A numerical algorithm for the construction of efficient quadrature rules in two dimensions, Comput. Math. Appl., 59, 663-676 (2010) · Zbl 1189.65047
[15] Wandzura, S.; Xiao, H., Symmetric quadrature rules on a triangle, Comput. Math. Appl., 45, 1829-1840 (2003) · Zbl 1050.65022
[16] A. Sommariva, Cubature data sets, https://www.math.unipd.it/ãlvise/sets.html. · Zbl 1091.65026
[17] Lyness, J. N.; Cools, R., A survey of numerical cubature over triangles, (Proc. Sympos. Appl. Math., vol. 48 (1994), AMS: AMS Providence), 127-150 · Zbl 0820.41026
[18] Tchakaloff, V., Formules de cubatures mécaniques à coefficients non négatifs, Bull. Sci. Math., 81, 123-134 (1957), (in French) · Zbl 0079.13908
[19] Caratheodory, C., Über den Variabilittsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann., 64, 95-115 (1907) · JFM 38.0448.01
[20] Tchernychova, M., Caratheodory Cubature Measures (2015), University of Oxford, (supervisor: T. Lyons)
[21] Lawson, C. L.; Hanson, R. J., (Solving Least Squares Problems. Solving Least Squares Problems, Classics in Applied Mathematics, vol. 15 (1995), SIAM: SIAM Philadelphia), Revised reprint of the 1974 original · Zbl 0860.65028
[22] A. Sommariva, Cubature codes, https://www.math.unipd.it/ãlvise/software.html. · Zbl 1105.65320
[23] Sommariva, A.; Vianello, M., Nearly optimal nested sensors location for polynomial regression on complex geometries, Sampl. Theory Signal Image Process., 17, 95-101 (2018) · Zbl 1421.94025
[24] Cools, R., Monomial cubature rules since “Stroud”: a compilation - part 2, J. Comput. Appl. Math., 112, 21-27 (1999) · Zbl 0954.65021
[25] Pleśniak, W., Remarks on Jackson’s theorem in \(\mathbb{R}^N\), East J. Approx., 2, 3, 301-308 (1996) · Zbl 0860.41014
[26] Santin, G.; Sommariva, A.; Vianello, M., An algebraic cubature formula on curvilinear polygons, Appl. Math. Comput., 217, 10003-10015 (2011) · Zbl 1233.65026
[27] Hotelling, H., Tubes and spheres in n-spaces, and a class of statistical problems, Am. J. Math., 61, 440-460 (1939) · JFM 65.0795.02
[28] M. Slawski, Non-negative least squares: comparison of algorithms, https://sites.google.com/site/slawskimartin/code. · Zbl 1280.62086
[29] Forbes, G. W., Optical system assessment for design: numerical ray tracing in the Gaussian pupil, J. Opt. Soc. Amer. A, 5, 1943-1956 (1988)
[30] Xiao, H.; Rokhlin, V.; Yarvin, N., Prolate spheroidal wave functions, quadrature and interpolation, Inverse Problems, 17, 805-838 (2001) · Zbl 0991.65024
[31] Zemax, OpticStudio package, www.zemax.com/products/opticstudio.
[32] Shannon, R. R., Handbook of Optics - Chapter 35, Optical Specifications (1995), McGraw-Hill: McGraw-Hill New York
[33] Da Fies, G.; Sommariva, A.; Vianello, M., Algebraic cubature by linear blending of elliptical arcs, Appl. Numer. Math., 74, 49-61 (2013) · Zbl 1285.65014
[34] Wyant, J. C., Zernike polynomials for the web (2003), (Adaptive Optics - Max Planck Institute for Astronomy). www.mpia.de/AO/INSTRUMENTS/FPRAKT/ZernikePolynomialsForTheWeb.pdf
[35] Da Fies, G.; Vianello, M., Product Gaussian quadrature on circular lunes, Numer. Math. Theory Methods Appl., 7, 251-264 (2014) · Zbl 1324.65035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.