×

Computational identification of adsorption and desorption parameters for pore scale transport in periodic porous media. (English) Zbl 1430.76441

Summary: Computational identification of unknown adsorption and desorption rates is discussed in conjunction with reactive flow considered at pore scale. The reactive transport is governed by incompressible Stokes equations, coupled with convection-diffusion equation for species transport. The surface reactions, namely adsorption and desorption, are accounted via Robin boundary conditions. Henry and Langmuir isotherms are considered. Measured concentration of the specie at the outlet of the domain has to be provided to carry out the identification procedure. Deterministic and stochastic parameter identification approaches are considered. The influence of the noise in the measurements on the accuracy of the identified parameters is discussed. Multistage identification procedure is suggested for the considered class of problems. The proposed identification approach is applicable for different geometries (random and periodic) and for a range of process parameters. In this paper the potential of the approach is demonstrated in identifying parameters of Langmuir isotherm for low Peclet and low Damkoler numbers reactive flow in a 2D periodic porous media with circular inclusions. Simulation results for random porous media and other regime parameters are subject of follow up papers. Finite element approximation in space and implicit time discretization are exploited.

MSC:

76S05 Flows in porous media; filtration; seepage
86A22 Inverse problems in geophysics
76D05 Navier-Stokes equations for incompressible viscous fluids
76R50 Diffusion
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
76M21 Inverse problems in fluid mechanics

Software:

SALib; FEniCS; Gmsh
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bear, J., Dynamics of Fluids in Porous Media (2013), Courier Corporation
[2] Helmig, R., Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems (1997), Springer-Verlag
[3] Lavrent’ev, M. M.; Romanov, V. G.; Shishatskii, S. P., Ill-posed Problems of Mathematical Physics and Analysis (1986), American Mathematical Society · Zbl 0593.35003
[4] Alifanov, O. M., Inverse Heat Transfer Problems (2011), Springer: Springer Berlin · Zbl 0979.80003
[5] Isakov, V., Inverse Problems for Partial Differential Equations (2017), Springer · Zbl 1366.65087
[6] Samarskii, A. A.; Vabishchevich, P. N., Numerical Methods for Solving Inverse Problems of Mathematical Physics (2007), De Gruyter: De Gruyter Berlin · Zbl 1136.65105
[7] N.-Z. Sun, Inverse Problems in Groundwater Modeling, vol. 6, Springer Science & Business Media, 2013.
[8] Tarantola, A., Inverse Problem Theory and Methods for Model Parameter Estimation (2005), SIAM · Zbl 1074.65013
[9] Aster, R. C.; Borchers, B.; Thurber, C. H., Parameter Estimation and Inverse Problems (2013), Elsevier · Zbl 1273.35306
[10] Tikhonov, A. N.; Arsenin, V. Y., Solutions of Ill-Posed Problems (1977), Winston · Zbl 0354.65028
[11] H.W. Engl, C.W. Groetsch, Inverse and Ill-Posed Problems, vol. 4, Elsevier, 2014.
[12] (Horst, R.; Pardalos, P. M., Handbook of Global Optimization (2013), Springer) · Zbl 0805.00009
[13] Nocedal, J.; Wright, S. J., Numerical Optimization (2006), Springer · Zbl 1104.65059
[14] Zhigljavsky, A.; Žilinskas, A., Stochastic Global Optimization (2008), Springer · Zbl 1136.90003
[15] Sobol, I. M., Uniformly distributed sequences with an additional uniform property, USSR Comput. Math. Math. Phys., 16, 5, 236-242 (1976) · Zbl 0391.10033
[16] Sobol, I. M., On the systematic search in a hypercube, SIAM J. Numer. Anal., 16, 5, 790-793 (1979) · Zbl 0445.65006
[17] Herman, J.; Usher, W., SALib: An open-source python library for sensitivity analysis, J. Open Source Softw., 2, 9 (2017)
[18] Sobol, I.; Statnikov, R., Choosing Optimal Parameters in Problems with Many Criteria (2006), Drofa, (in Russian)
[19] Kulkarni, P.; Baron, P. A.; Willeke, K., Aerosol Measurement: Principles, Techniques, and Applications (2011), John Wiley & Sons
[20] Messina, F.; Marchisio, D. L.; Sethi, R., An extended and total flux normalized correlation equation for predicting single-collector efficiency, J. Colloid Interface Sci., 446, 185-193 (2015)
[21] Wood, B. D.; Quintard, M.; Whitaker, S., Estimation of adsorption rate coefficients based on the Smoluchowski equation, Chem. Eng. Sci., 59, 10, 1905-1921 (2004)
[22] Kralchevsky, P. A.; Danov, K. D.; Denkov, N. D., Chemical physics of colloid systems and interfaces, (Handbook of Surface and Colloid Chemistry (2009), Taylor & Francis Group, LLC), 197-377
[23] Acheson, D. J., Elementary Fluid Dynamics (2005), Clarendon Press: Clarendon Press Oxford · Zbl 0719.76001
[24] Churbanov, A. G.; Iliev, O.; Strizhov, V. F.; Vabishchevich, P. N., Numerical simulation of oxidation processes in a cross-flow around tube bundles, Appl. Math. Model., 59, 251-271 (2018) · Zbl 1480.76025
[25] Geuzaine, C.; Remacle, J.-F., Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[26] Gresho, P. M.; Sani, R. L., Incompressible Flow and the Finite Element Method, Volume 2, Isothermal Laminar Flow (2000), Wiley: Wiley New York · Zbl 0988.76005
[27] Taylor, C.; Hood, P., A numerical solution of the Navier-Stokes equations using the finite element technique, Comput. & Fluids, 1, 1, 73-100 (1973) · Zbl 0328.76020
[28] Logg, A.; Mardal, K.-A.; Wells, G. N., Automated Solution of Differential Equations by the Finite Element Method (2012), Springer · Zbl 1247.65105
[29] Alnæs, M. S.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M. E.; Wells, G. N., The FEniCS project version 1.5, Arch. Numer. Softw., 3, 100 (2015)
[30] Samarskii, A. A., The Theory of Difference Schemes (2001), Marcel Dekker Inc.: Marcel Dekker Inc. New York · Zbl 0971.65076
[31] Ascher, U. M., Numerical Methods for Evolutionary Differential Equations (2008), Society for Industrial Mathematics · Zbl 1157.65048
[32] Maday, Y.; Anthony, T.; Penn, J. D.; Yano, M., PBDW state estimation: Noisy observations; configuration-adaptive background spaces; physical interpretations, ESAIM: Proc. Surv., 50, 144-168 (2015) · Zbl 1342.82116
[33] Kern, M., Numerical Methods for Inverse Problems (2016), Wiley · Zbl 1342.65138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.