×

An integrated in phase FD procedure for DiffEqns in chemical problems. (English) Zbl 1433.81081

Summary: A newly FD procedure is perused for the effective application on the DiffEqns in chemical problems.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
65L05 Numerical methods for initial value problems involving ordinary differential equations
81V55 Molecular physics
80A30 Chemical kinetics in thermodynamics and heat transfer
80A22 Stefan problems, phase changes, etc.

Software:

LaTeX; EXPFIT4
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allison, Ac, The numerical solution of coupled differential equations arising from the Schrödinger equation, J. Comput. Phys., 6, 378-391 (1970) · Zbl 0209.47004
[2] Cramer, Cj, Essentials of Computational Chemistry (2004), Chichester: Wiley, Chichester
[3] Jensen, F., Introduction to Computational Chemistry (2007), Chichester: Wiley, Chichester
[4] Leach, Ar, Molecular Modelling—Principles and Applications (2001), Essex: Pearson, Essex
[5] Atkins, P.; Friedman, R., Molecular Quantum Mechanics (2011), Oxford: Oxford University Press, Oxford
[6] Kenan Mu, Te; Simos, A., Runge-Kutta type implicit high algebraic order two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of coupled differential equations arising from the Schrödinger equation, J. Math. Chem., 53, 1239-1256 (2015) · Zbl 1318.65039
[7] Simos, Te, Exponentially fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation and related problems, Comput. Mater. Sci., 18, 315-332 (2000)
[8] Kovalnogov, Vn; Fedorov, Rv; Generalov, Da; Khakhalev, Ya; Zolotov, An, Numerical research of turbulent boundary layer based on the fractal dimension of pressure fluctuations, AIP Conf. Proc., 738, 480004 (2016)
[9] Kovalnogov, Vn; Fedorov, Rv; Karpukhina, Tv; Tsvetova, Ev, Numerical analysis of the temperature stratification of the disperse flow, AIP Conf. Proc., 1648, 850033 (2015)
[10] Kovalnogov, N.; Nadyseva, E.; Shakhov, O.; Kovalnogov, V., Control of turbulent transfer in the boundary layer through applied periodic effects, Izvestiya Vysshikh Uchebnykh Zavedenii Aviatsionaya Tekhnika, 1, 49-53 (1998)
[11] Kovalnogov, Vn; Fedorov, Rv; Generalov, Da, Modeling and development of cooling technology of turbine engine blades, Int. Rev. Mech. Eng., 9, 4, 331-335 (2015)
[12] Kottwitz, S., LaTeX Cookbook, 231-236 (2015), Birmingham: Packt Publishing Ltd., Birmingham
[13] Medvedeva, Ma; Simos, Te, An accomplished phase FD process for DEs in chemistry, J. Math. Chem., 57, 10, 2208-2228 (2019) · Zbl 1429.81028
[14] Simos, Te; Williams, Ps, A finite difference method for the numerical solution of the Schrödinger equation, J. Comput. Appl. Math., 79, 189-205 (1997) · Zbl 0877.65054
[15] Yan, K.; Simos, Te, A finite difference pair with improved phase and stability properties, J. Math. Chem., 56, 1, 170-192 (2018) · Zbl 1384.65050
[16] Chawla, Mm; Sharma, Sr, Families of 5Th order Nyström methods for Y”=F(X, Y) and intervals of periodicity, Computing, 26, 3, 247-256 (1981) · Zbl 0437.34035
[17] Franco, Jm; Palacios, M., High-order P-stable multistep methods, J. Comput. Appl. Math., 30, 1-10 (1990) · Zbl 0726.65091
[18] Lambert, Jd, Numerical Methods for Ordinary Differential Systems, 104-107 (1991), New York: Wiley, New York · Zbl 0745.65049
[19] Stiefel, E.; Bettis, Dg, Stabilization of Cowell’s method, Numer. Math., 13, 154-175 (1969) · Zbl 0219.65062
[20] Chawla, Mm; Sharma, Sr, Intervals of periodicity and absolute stability of explicit Nyström methods for Y”=F(X, Y), BIT Numer. Math., 21, 4, 455-464 (1981) · Zbl 0469.65048
[21] Chawla, Mm, Unconditionally stable noumerov-type methods for 2nd order differential-equations, BIT Numer. Math., 23, 4, 541-542 (1983) · Zbl 0523.65055
[22] http://www.burtleburtle.net/bob/math/multistep.html
[23] Chawla, Mm; Rao, Ps, A Noumerov-type method with minimal phase-lag for the integration of 2nd order periodic initial-value problems, J. Comput. Appl. Math., 11, 3, 277-281 (1984) · Zbl 0565.65041
[24] Chawla, Mm, Numerov made explicit has better stability, BIT Numer. Math., 24, 1, 117-118 (1984) · Zbl 0568.65042
[25] Chawla, Mm; Rao, Ps, High-accuracy P-stable methods for Y” = F(T, Y), IMA J. Numer. Anal., 5, 2, 215-220 (1985) · Zbl 0573.65059
[26] Chawla, Mm, Correction, IMA J. Numer. Anal., 6, 2, 252-252 (1986)
[27] Lyche, T., Chebyshevian multistep methods for ordinary differential eqations, Numer. Math., 19, 65-75 (1972) · Zbl 0221.65123
[28] Thomas, Rm, Phase properties of high order almost P-stable formulae, BIT Numer. Math., 24, 225-238 (1984) · Zbl 0569.65052
[29] Lambert, Jd; Watson, Ia, Symmetric multistep methods for periodic initial values problems, J. Inst. Math. Appl., 18, 189-202 (1976) · Zbl 0359.65060
[30] Chawla, Mm, A new class of explicit 2-step 4th order methods for Y” = F(T, Y) with extended intervals of periodicity, J. Comput. Appl. Math., 14, 3, 467-470 (1986) · Zbl 0583.65049
[31] Chawla, Mm; Neta, B., Families of 2-step 4th-order P-stable methods for 2nd-order differential-equations, J. Comput. Appl. Math., 15, 2, 213-223 (1986) · Zbl 0599.65044
[32] Chawla, Mm; Rao, Ps, A Noumerov-type method with minimal phase-lag for the integration of 2nd-order periodic initial-value problems 2. Explicit method, J. Comput. Appl. Math., 15, 3, 329-337 (1986) · Zbl 0598.65054
[33] Chawla, Mm; Rao, Ps; Neta, B., 2-Step 4th-order P-stable methods with phase-lag of order 6 for Y”=F(T, Y), J. Comput. Appl. Math., 16, 2, 233-236 (1986) · Zbl 0596.65047
[34] Chawla, Mm; Rao, Ps, An explicit 6th-order method with phase-lag of order 8 for Y”=F(T, Y), J. Comput. Appl. Math., 17, 3, 365-368 (1987) · Zbl 0614.65084
[35] Chawla, Mm; Al-Zanaidi, Ma, Non-dissipative extended one-step methods for oscillatory problems, Int. J. Comput Math., 69, 1-2, 85-100 (1998) · Zbl 0939.65098
[36] Chawla, Mm; Al-Zanaidi, Ma, A two-stage fourth-order “almost” P-stable method for oscillatory problems, J. Comput. Appl. Math., 89, 1, 115-118 (1998) · Zbl 0939.65099
[37] Chawla, Mm; Al-Zanaidi, Ma; Al-Ghonaim, Ss, Singly-implicit stabilized extended one-step methods for second-order initial-value problems with oscillating solutions, Math. Comput. Modell., 29, 2, 63-72 (1999) · Zbl 0992.65080
[38] Coleman, Jp, Numerical-methods for Y”=F(X, Y) via rational-approximations for the cosine, IMA J. Numer. Anal., 9, 2, 145-165 (1989) · Zbl 0675.65072
[39] Coleman, Jp; Booth, As, Analysis of a family of Chebyshev methods for Y” = F(X, Y), J. Comput. Appl. Math., 44, 1, 95-114 (1992) · Zbl 0773.65048
[40] Coleman, Jp; Ixaru, Lg, P-stability and exponential-fitting methods for Y”=F(X, Y), IMA J. Numer. Anal., 16, 2, 179-199 (1996) · Zbl 0847.65052
[41] Coleman, Jp; Duxbury, Sc, Mixed collocation methods for Y ” = F(X, Y), J. Comput. Appl. Math., 126, 1-2, 47-75 (2000) · Zbl 0971.65073
[42] Ixaru, Lg; Berceanu, S., Coleman method maximally adapted to the Schrödinger-equation, Comput. Phys. Commun., 44, 1-2, 11-20 (1987) · Zbl 0664.65092
[43] Ixaru, Lg, The Numerov method and singular potentials, J. Comput. Phys., 72, 1, 270-274 (1987) · Zbl 0621.65099
[44] Ixaru, Lg; Rizea, M., Numerov method maximally adapted to the Schrödinger-equation, J. Comput. Phys., 73, 2, 306-324 (1987) · Zbl 0633.65131
[45] Ixaru, Lg; De Meyer, H.; Vanden Berghe, G.; Van Daele, M., Expfit4—a Fortran program for the numerical solution of systems of nonlinear second-order initial-value problems, Comput. Phys. Commun., 100, 1-2, 71-80 (1997) · Zbl 0927.65099
[46] Ixaru, Lg; Vanden Berghe, G.; De Meyer, H.; Van Daele, M., Four-step exponential-fitted methods for nonlinear physical problems, Comput. Phys. Commun., 100, 1-2, 56-70 (1997) · Zbl 0927.65100
[47] Ixaru, Lg; Rizea, M., Four step methods for Y”=F(X,Y), J. Comput. Appl. Math., 79, 1, 87-99 (1997) · Zbl 0872.65070
[48] Van Daele, M.; Vanden Berghe, G.; De Meyer, H.; Ixaru, Lg, Exponential-fitted four-step methods for Y ”=F(X,Y), Int. J. Comput. Math., 66, 3-4, 299-309 (1998) · Zbl 0894.65032
[49] Ixaru, Lg; Paternoster, B., A conditionally p-stable fourth-order exponential-fitting method for Y ” = F(X, Y), J. Comput. Appl. Math., 106, 1, 87-98 (1999) · Zbl 0934.65079
[50] Ixaru, Lg, Numerical operations on oscillatory functions, Comput. Chem., 25, 1, 39-53 (2001) · Zbl 1064.65021
[51] Ixaru, Lg; Vanden Berghe, G.; De Meyer, H., Exponentially fitted variable two-step BDF algorithm for first order ODEs, Comput. Phys. Commun., 150, 2, 116-128 (2003) · Zbl 1196.65110
[52] Medvedev, Ma; Simos, Te, A three-stages multistep teeming in phase algorithm for computational problems in chemistry, J. Math. Chem., 57, 6, 1598-1617 (2019) · Zbl 1417.81172
[53] Xu, M.; Simos, Te, A multistage two-step fraught in phase scheme for problems in mathematical chemistry, J. Math. Chem., 57, 7, 1710-1731 (2019) · Zbl 1436.65086
[54] Hui, F.; Simos, Te, A new family of two stage symmetric two-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation, J. Math. Chem., 53, 10, 2191-2213 (2015) · Zbl 1329.65142
[55] Ixaru, Lg; Rizea, M., Comparison of some four-step methods for the numerical solution of the Schrödinger equation, Comput. Phys. Commun., 38, 3, 329-337 (1985) · Zbl 0679.65053
[56] Ixaru, Lg; Micu, M., Topics in Theoretical Physics (1978), Bucharest: Central Institute of Physics, Bucharest
[57] Ixaru, Lg; Rizea, M., A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies, Comput. Phys. Commun., 19, 23-27 (1980)
[58] Dormand, Jr; El-Mikkawy, Mea; Prince, Pj, Families of Runge-Kutta-Nyström formulae, IMA J. Numer. Anal., 7, 235-250 (1987) · Zbl 0624.65059
[59] Dormand, Jr; Prince, Pj, A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math., 6, 19-26 (1980) · Zbl 0448.65045
[60] Quinlan, Gd; Tremaine, S., Symmetric multistep methods for the numerical integration of planetary orbits, Astron. J., 100, 1694-1700 (1990)
[61] Raptis, Ad; Allison, Ac, Exponential-fitting methods for the numerical solution of the Schrödinger equation, Comput. Phys. Commun., 14, 1-5 (1978)
[62] Rizea, M., Exponential fitting method for the time-dependent Schrödinger equation, J. Math. Chem., 48, 1, 55-65 (2010) · Zbl 1198.81100
[63] Konguetsof, A., Two-step high order hybrid explicit method for the numerical solution of the Schrödinger equation, J. Math. Chem., 48, 224-252 (2010) · Zbl 1198.81092
[64] Raptis, Ad; Cash, Jr, A variable step method for the numerical integration of the one-dimensional Schrödinger equation, Comput. Phys. Commun., 36, 113-119 (1985) · Zbl 0578.65086
[65] Bernstein, Rb; Dalgarno, A.; Massey, H.; Percival, Ic, Thermal scattering of atoms by homonuclear diatomic molecules, Proc. R. Soc. Ser. A, 274, 427-442 (1963)
[66] Bernstein, Rb, Quantum mechanical (phase shift) analysis of differential elastic scattering of molecular beams, J. Chem. Phys., 33, 795-804 (1960)
[67] Rizea, M.; Ledoux, V.; Van Daele, M.; Vanden Berghe, G.; Carjan, N., Finite difference approach for the two-dimensional Schrödinger equation with application to scission-neutron emission, Comput. Phys. Commun., 179, 7, 466-478 (2008) · Zbl 1197.81041
[68] Ixaru, Lg; Rizea, M.; Vanden Berghe, G.; De Meyer, H., Weights of the exponential fitting multistep algorithms for first-order ODEs, J. Comput. Appl. Math., 132, 1, 83-93 (2001) · Zbl 0991.65061
[69] Raptis, Ad; Cash, Jr, Exponential and bessel fitting methods for the numerical-solution of the Schrödinger-equation, Comput. Phys. Commun., 44, 1-2, 95-103 (1987) · Zbl 0664.65090
[70] Papageorgiou, Cd; Raptis, Ad, A method for the solution of the Schrödinger-equation, Comput. Phys. Commun., 43, 3, 325-328 (1987) · Zbl 0664.65091
[71] Zhou, Z.; Simos, Te, A new two stage symmetric two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial Schrödinger equation, J. Math. Chem., 54, 442-465 (2016) · Zbl 1349.65222
[72] Raptis, Ad, Exponential multisteo methods for ordinary differential equations, Bull. Greek Math. Soc., 25, 113-126 (1984) · Zbl 0592.65046
[73] Ning, H.; Simos, Te, A low computational cost eight algebraic order hybrid method with vanished phase-lag and its first, second, third and fourth derivatives for the approximate solution of the Schrödinger equation, J. Math. Chem., 53, 6, 1295-1312 (2015) · Zbl 1331.65098
[74] Wang, Z.; Simos, Te, An economical eighth-order method for the approximation of the solution of the Schrödinger equation, J. Math. Chem., 55, 717-733 (2017) · Zbl 1422.65115
[75] Cash, Jr; Raptis, Ad, A high-order method for the numerical-integration of the one-dimensional Schrödinger-equation, Comput. Phys. Commun., 33, 4, 299-304 (1984)
[76] Raptis, Ad, Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control, Comput. Phys. Commun., 28, 4, 427-431 (1983)
[77] Raptis, Ad, 2-step methods for the numerical-solution of the Schrödinger-equation, Comput. Phys. Commun., 28, 4, 373-378 (1982) · Zbl 0473.65060
[78] Raptis, Ad, On the numerical-solution of the Schrödinger-equation, Comput. Phys. Commun., 24, 1, 1-4 (1981)
[79] Raptis, Ad, Exponential-fitting methods for the numerical-integration of the 4th-order differential-equation \(\text{Y}^{iv} \)+F.Y=G, Computing, 24, 2-3, 241-250 (1980) · Zbl 0416.65048
[80] Van De Vyver, H., A symplectic exponentially fitted modified Runge-Kutta-Nyström method for the numerical integration of orbital problems, New Astron., 10, 4, 261-269 (2005)
[81] Van De Vyver, H., On the generation of p-stable exponentially fitted Runge-Kutta-Nyström methods by exponentially fitted Runge-Kutta methods, J. Comput. Appl. Math., 188, 2, 309-318 (2006) · Zbl 1086.65073
[82] Van Daele, M.; Berghe, Gv, P-stable Obrechkoff methods of arbitrary order for second-order differential equations, Numer. Algorithms, 44, 2, 115-131 (2007) · Zbl 1123.65070
[83] Van Daele, M.; Vanden Berghe, G., P-stable exponentially-fitted Obrechkoff methods of arbitrary order for second-order differential equations, Numer. Algorithms, 46, 4, 333-350 (2007) · Zbl 1134.65043
[84] Fang, Y.; Xinyuan, W., A trigonometrically fitted explicit Numerov-type method for second-order initial value problems with oscillating solutions, Appl. Numer. Math., 58, 3, 341-351 (2008) · Zbl 1136.65068
[85] Vanden Berghe, G.; Van Daele, M., Exponentially-fitted Obrechkoff methods for second-order differential equations, Appl. Numer. Math., 59, 3-4, 815-829 (2009) · Zbl 1166.65352
[86] Hollevoet, D.; Van Daele, M.; Vanden Berghe, G., The optimal exponentially-fitted numerov method for solving two-point boundary value problems, J. Comput. Appl. Math., 230, 1, 260-269 (2009) · Zbl 1167.65406
[87] Franco, Jm; Rández, L., Explicit exponentially fitted two-step hybrid methods of high order for second-order oscillatory IVPs, Appl. Math. Comput., 273, 493-505 (2016) · Zbl 1410.65250
[88] Franco, Jm; Khiar, Y.; Rández, L., Two new embedded pairs of explicit Runge-Kutta methods adapted to the numerical solution of oscillatory problems, Appl. Math. Comput., 252, 45-57 (2015) · Zbl 1338.65187
[89] Franco, Jm; Gomez, I.; Rández, L., Optimization of explicit two-step hybrid methods for solving orbital and oscillatory problems, Comput. Phys. Commun., 185, 10, 2527-2537 (2014) · Zbl 1360.70038
[90] Franco, Jm; Gomez, I., Trigonometrically fitted nonlinear two-step methods for solving second order oscillatory IVPs, Appl. Math. Comput., 232, 643-657 (2014) · Zbl 1410.65261
[91] Franco, Jm; Gomez, I., Symplectic explicit methods of Runge-Kutta-Nyström type for solving perturbed oscillators, J. Comput. Appl. Math., 260, 482-493 (2014) · Zbl 1293.65102
[92] Franco, Jm; Gomez, I., Some procedures for the construction of high-order exponentially fitted Runge-Kutta-Nyström methods of explicit type, Comput. Phys. Commun., 184, 4, 1310-1321 (2013) · Zbl 1301.65071
[93] Calvo, M.; Franco, Jm; Montijano, Ji; Rández, L., On some new low storage implementations of time advancing Runge-Kutta methods, J. Comput. Appl. Math., 236, 15, 3665-3675 (2012) · Zbl 1245.65092
[94] Calvo, M.; Franco, Jm; Montijano, Ji; Rández, L., Symmetric and symplectic exponentially fitted Runge-Kutta methods of high order, Comput. Phys. Commun., 181, 12, 2044-2056 (2010) · Zbl 1219.65148
[95] Calvo, M.; Franco, Jm; Montijano, Ji; Rández, L., On high order symmetric and symplectic trigonometrically fitted Runge-Kutta methods with an even number of stages, BIT Numer. Math., 50, 1, 3-21 (2010) · Zbl 1187.65076
[96] Franco, Jm; Gomez, I., Accuracy and linear stability of RKN methods for solving second-order stiff problems, Appl. Numer. Math., 59, 5, 959-975 (2009) · Zbl 1161.65062
[97] Calvo, M.; Franco, Jm; Montijano, Ji; Rández, L., Sixth-order symmetric and symplectic exponentially fitted Runge-Kutta methods of the Gauss type, J. Comput. Appl. Math., 223, 1, 387-398 (2009) · Zbl 1153.65119
[98] Calvo, M.; Franco, Jm; Montijano, Ji; Rández, L., Structure preservation of exponentially fitted Runge-Kutta methods, J. Comput. Appl. Math., 218, 2, 421-434 (2008) · Zbl 1154.65341
[99] Calvo, M.; Franco, Jm; Montijano, Ji; Rández, L., Sixth-order symmetric and symplectic exponentially fitted modified Runge-Kutta methods of Gauss type, Comput. Phys. Commun., 178, 10, 732-744 (2008) · Zbl 1196.70007
[100] Franco, Jm, Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems, Comput. Phys. Commun., 177, 6, 479-492 (2007) · Zbl 1196.65114
[101] Franco, Jm, New methods for oscillatory systems based on ARKN methods, Appl. Numer. Math., 56, 8, 1040-1053 (2006) · Zbl 1096.65068
[102] Franco, Jm, Runge-Kutta-Nyström methods adapted to the numerical integration of perturbed oscillators, Comput. Phys. Commun., 147, 770-787 (2002) · Zbl 1019.65050
[103] Franco, Jm, Stability of explicit ARKN methods for perturbed oscillators, J. Comput. Appl. Math., 173, 389-396 (2005) · Zbl 1065.65101
[104] Wu, Xy; You, X.; Li, Jy, Note on derivation of order conditions for ARKN methods for perturbed oscillators, Comput. Phys. Commun., 180, 1545-1549 (2009)
[105] Tocino, A.; Vigo-Aguiar, J., Symplectic conditions for exponential fitting Runge-Kutta-Nyström methods, Math. Comput. Modell., 42, 873-876 (2005) · Zbl 1086.65120
[106] Brugnano, L.; Iavernaro, F.; Trigiante, D., Hamiltonian boundary value methods (Energy preserving discrete line integral methods), JNAIAM J. Numer. Anal. Ind. Appl. Math., 5, 17-37 (2010) · Zbl 1432.65182
[107] Iavernaro, F.; Trigiante, D., High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems, JNAIAM J. Numer. Anal. Ind. Appl. Math., 4, 87-101 (2009) · Zbl 1191.65169
[108] Konguetsof, A., A generator of families of two-step numerical methods with free parameters and minimal phase-lag, J. Math. Chem., 55, 9, 1808-1832 (2017) · Zbl 1421.65017
[109] Konguetsof, A., A hybrid method with phase-lag and derivatives equal to zero for the numerical integration of the Schrödinger equation, J. Math. Chem., 49, 7, 1330-1356 (2011) · Zbl 1304.65170
[110] Van De Vyver, H., A phase-fitted and amplification-fitted explicit two-step hybrid method for second-order periodic initial value problems, Int. J. Modern Phys. C, 17, 5, 663-675 (2006) · Zbl 1107.82304
[111] Van De Vyver, H., An explicit Numerov-type method for second-order differential equations with oscillating solutions, Comput. Math. Appl., 53, 9, 1339-1348 (2007) · Zbl 1121.65086
[112] Fang, Y.; Xinyuan, W., A trigonometrically fitted explicit hybrid method for the numerical integration of orbital problems, Appl. Math. Comput., 189, 1, 178-185 (2007) · Zbl 1344.65060
[113] Neta, B., P-stable high-order super-implicit and Obrechkoff methods for periodic initial value problems, Comput. Math. Appl., 54, 1, 117-126 (2007) · Zbl 1127.65049
[114] Van De Vyver, H., Phase-fitted and amplification-fitted two-step hybrid methods for \(\text{ y }^{\prime \prime } = \text{ f } (\text{ x, } \text{ y })\), J. Comput. Appl. Math., 209, 1, 33-53 (2007) · Zbl 1141.65061
[115] Van De Vyver, H., Efficient one-step methods for the Schrödinger equation, MATCH—Commun. Math. Comput. Chem., 60, 3, 711-732 (2008) · Zbl 1199.65239
[116] Martín-Vaquero, J.; Vigo-Aguiar, J., Exponential fitted Gauss, Radau and Lobatto methods of low order, Numer. Algorithms, 48, 4, 327-346 (2008) · Zbl 1148.65059
[117] Konguetsof, A., A new two-step hybrid method for the numerical solution of the Schrödinger equation, J. Math. Chem., 47, 2, 871-890 (2010) · Zbl 1200.81051
[118] F.A. Hendi, P-stable higher derivative methods with minimal phase-lag for solving second order differential equations. J. Appl. Math. Article ID 407151 (2011) · Zbl 1238.65069
[119] Van De Vyver, H., Comparison of some special optimized fourth-order Runge-Kutta methods for the numerical solution of the Schrödinger equation, Comput. Phys. Commun., 166, 2, 109-122 (2005) · Zbl 1196.81081
[120] Wang, Z.; Zhao, D.; Dai, Y.; Dongmei, W., An improved trigonometrically fitted P-stable Obrechkoff method for periodic initial-value problems, Proc. R. Soc. A Math. Phys. Eng. Sci., 461, 2058, 1639-1658 (2005) · Zbl 1139.65310
[121] Van Daele, M.; Vanden Berghe, G.; De Meyer, G., Properties and implementation of r-adams methods based on mixed-type interpolation, Comput. Math. Appl., 30, 10, 37-54 (1995) · Zbl 0837.65079
[122] Vigo-Aguiar, J.; Quintales, Lm, A parallel ODE solver adapted to oscillatory problems, J. Supercomput., 19, 2, 163-171 (2001) · Zbl 0992.65079
[123] Wang, Z., Trigonometrically-fitted method with the Fourier frequency spectrum for undamped Duffing equation, Comput. Phys. Commun., 174, 2, 109-118 (2006) · Zbl 1196.65061
[124] Wang, Z., Trigonometrically-fitted method for a periodic initial value problem with two frequencies, Comput. Phys. Commun., 175, 4, 241-249 (2006) · Zbl 1196.65137
[125] Vigo-Aguiar, J.; Ferrandiz, Jm, A general procedure for the adaptation of multistep algorithms to the integration of oscillatory problems, SIAM J. Numer. Anal., 35, 4, 1684-1708 (1998) · Zbl 0916.65081
[126] Vigo-Aguiar, J.; Ramos, H., Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations, J. Comput. Appl. Math., 158, 1, 187-211 (2003) · Zbl 1042.65053
[127] Vigo-Aguiar, J.; Natesan, S., A parallel boundary value technique for singularly perturbed two-point boundary value problems, J. Supercomput., 27, 2, 195-206 (2004) · Zbl 1070.65066
[128] Tang, C.; Yan, H.; Zhang, H.; Li, Wr, The various order explicit multistep exponential fitting for systems of ordinary differential equations, J. Comput. Appl. Math., 169, 1, 171-182 (2004) · Zbl 1052.65065
[129] Tang, C.; Yan, H.; Zhang, H.; Chen, Z.; Liu, M.; Zhang, G., The arbitrary order implicit multistep schemes of exponential fitting and their applications, J. Comput. Appl. Math., 173, 1, 155-168 (2005) · Zbl 1063.65062
[130] Van De Vyver, H., Frequency evaluation for exponentially fitted Runge-Kutta methods, J. Comput. Appl. Math., 184, 2, 442-463 (2005) · Zbl 1077.65082
[131] Coleman, Jp; Ixaru, Lg, Truncation errors in exponential fitting for oscillatory problems, SIAM J. Numer. Anal., 44, 4, 1441-1465 (2006) · Zbl 1123.65016
[132] Martín-Vaquero, J.; Vigo-Aguiar, J., Adapted BDF algorithms: higher-order methods and their stability, J. Sci. Comput., 32, 2, 287-313 (2007) · Zbl 1125.65067
[133] Vigo-Aguiar, J.; Martín-Vaquero, J.; Ramos, H., Exponential fitting BDF-Runge-Kutta algorithms, Comput. Phys. Commun., 178, 1, 15-34 (2008) · Zbl 1196.65118
[134] Paternoster, B., Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday, Comput. Phys. Commun., 183, 12, 2499-2512 (2012) · Zbl 1266.65029
[135] Wang, Z., Obrechkoff one-step method fitted with Fourier spectrum for undamped Duffing equation, Comput. Phys. Commun., 175, 11-12, 692-699 (2006) · Zbl 1196.65126
[136] Wang, C.; Wang, Z., A P-stable eighteenth-order six-step method for periodic initial value problems, Int. J. Modern Phys. C, 18, 3, 419-431 (2007) · Zbl 1200.65065
[137] Chen, J.; Wang, Z.; Shao, H.; Hao, H., Highly-accurate ground state energies of the He atom and the He-like ions by Hartree SCF calculation with Obrechkoff method, Comput. Phys. Commun., 179, 7, 486-491 (2008)
[138] Shao, H.; Wang, Z., Arbitrarily precise numerical solutions of the one-dimensional Schrödinger equation, Comput. Phys. Commun., 180, 1, 1-7 (2009) · Zbl 1198.81102
[139] H. Shao, Z. Wang, Numerical solutions of the time-dependent Schrödinger equation: reduction of the error due to space discretization. Phys. Rev. E 79(5) Article Number: 056705 (2009)
[140] Wang, Z.; Shao, H., A new kind of discretization scheme for solving a two-dimensional time-independent Schrödinger equation, Comput. Phys. Commun., 180, 6, 842-849 (2009) · Zbl 1198.81107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.