×

An input-output based analysis of convective velocity in turbulent channels. (English) Zbl 1460.76478

Summary: This paper employs an input-output based approach to analyse the convective velocities and transport of fluctuations in turbulent channel flows. The convective velocity for a fluctuating quantity associated with streamwise-spanwise wavelength pairs at each wall-normal location is obtained through the maximization of the power spectral density associated with the linearized Navier-Stokes equations with a turbulent mean profile and delta-correlated Gaussian forcing. We first demonstrate that the mean convective velocities computed in this manner agree well with those reported previously in the literature. We then exploit the analytical framework to probe the underlying mechanisms contributing to the local convective velocity at different wall-normal locations by isolating the contributions of each streamwise-spanwise wavelength pair (flow scale). The resulting analysis suggests that the behaviour of the convective velocity in the near-wall region is influenced by large-scale structures further away from the wall. These structures resemble Townsend’s attached eddies in the cross-plane, yet show incomplete similarity in the streamwise direction. We then investigate the role of each linear term in the momentum equation to isolate the contribution of the pressure, mean shear, and viscous effects to the deviation of the convective velocity from the mean at each flow scale. Our analysis highlights the role of the viscous effects, particularly in regards to large channel spanning structures whose influence extends to the near-wall region. The results of this work suggest the promise of an input-output approach for analysing convective velocity across a range of flow scales using only the mean velocity profile.

MSC:

76F40 Turbulent boundary layers
76F35 Convective turbulence
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Adrian, R. J.2007Hairpin vortex organization in wall turbulence. Phys. Fluids19 (4), 041301. · Zbl 1146.76307
[2] Adrian, R. J., Meinhart, C. D. & Tomkins, C. D.2000Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech.422, 1-54. · Zbl 0959.76503
[3] Del Álamo, J. C. & Jiménez, J.2003Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids15 (6), L41. · Zbl 1186.76136
[4] Del Álamo, J. C. & Jiménez, J.2006Linear energy amplification in turbulent channels. J. Fluid Mech.559, 205-213. · Zbl 1095.76021
[5] Del Álamo, J. C. & Jiménez, J.2009Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech.640, 5-26. · Zbl 1183.76761
[6] Del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D.2004Scaling of the energy spectra of turbulent channels. J. Fluid Mech.500, 135-144. · Zbl 1059.76031
[7] Baars, W. J., Hutchins, N. & Marusic, I.2016Spectral stochastic estimation of high-Reynolds-number wall-bounded turbulence for a refined inner-outer interaction model. Phys. Rev. Fluids1 (5), 054406.
[8] Baars, W. J., Hutchins, N. & Marusic, I.2017Self-similarity of wall-attached turbulence in boundary layers. J. Fluid Mech.823, R2. · Zbl 1419.76299
[9] Balakumar, B. & Adrian, R.2007Large- and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. Lond. A365 (1852), 665-681. · Zbl 1152.76369
[10] Bamieh, B. & Dahleh, M.2001Energy amplification in channel flows with stochastic excitation. Phys. Fluids13 (11), 3258-3269. · Zbl 1184.76042
[11] Bradshaw, P.1967‘Inactive’ motion and pressure fluctuations in turbulent boundary layers. J. Fluid Mech.30 (2), 241-258.
[12] Brandt, L.2014The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech. (B/Fluids)47, 80-96. · Zbl 1297.76073
[13] Brown, G. L. & Thomas, A. S. W.1977Large structure in a turbulent boundary layer. Phys. Fluids20 (10), S243-S252.
[14] Bullock, K. J., Cooper, R. E. & Abernathy, F. H.1978Structural similarity in radial correlations and spectra of longitudinal velocity fluctuations in pipe flow. J. Fluid Mech.88 (3), 585-608.
[15] Carper, M. & Porté-Agel, F.2004The role of coherent structures in subfilter-scale dissipation of turbulence measured in the atmospheric surface layer. J. Turbul.5, 1-24.
[16] Chandran, D., Baidya, R., Monty, J. P. & Marusic, I.2016Measurement of two-dimensional energy spectra in a turbulent boundary layer. In Proceedings of the 20th Australasian Fluid Mechanics Conference, Perth, Australia. · Zbl 1430.76262
[17] Chandran, D., Baidya, R., Monty, J. P. & Marusic, I.2017Two-dimensional energy spectra in high-Reynolds-number turbulent boundary layers. J. Fluid Mech.826, R1. · Zbl 1430.76262
[18] Chung, D. & Mckeon, B. J.2010Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech.661, 341-364. · Zbl 1205.76146
[19] Cossu, C., Pujals, G. & Depardon, S.2009Optimal transient growth and very large-scale structures in turbulent boundary layers. J. Fluid Mech.619, 79-94. · Zbl 1156.76400
[20] Dennis, D. J. C. & Nickels, T. B.2008On the limitations of Taylor’s hypothesis in constructing long structures in a turbulent boundary layer. J. Fluid Mech.614, 197-206. · Zbl 1155.76031
[21] Dinkelacker, A., Hessel, M., Meier, G. E. A. & Schewe, G.1977Investigation of pressure fluctuations beneath a turbulent boundary layer by means of an optical method. Phys. Fluids20 (10), S216-S224.
[22] Farabee, T. M. & Casarella, M. J.1991Spectral features of wall pressure fluctuations beneath turbulent boundary layers. Phys. Fluids A3 (10), 2410-2420.
[23] Farrell, B. F.1987Developing disturbances in shear. J. Atmos. Sci.44 (16), 2191-2199.
[24] Farrell, B. F. & Ioannou, P. J.1993Stochastic forcing of the linearized Navier-Stokes equations. Phys. Fluids A5 (11), 2600-2609. · Zbl 0809.76078
[25] Favre, A., Gaviglio, J. & Dumas, R.1967Structure of velocity space-time correlations in a boundary layer. Phys. Fluids10 (9), S138-S145.
[26] Fisher, M. J. & Davies, P. O. A. L.1964Correlation measurements in a non-frozen pattern of turbulence. J. Fluid Mech.18 (1), 97-116. · Zbl 0117.20708
[27] Frisch, U. & Kolmogorov, A. N.1995Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press. · Zbl 0832.76001
[28] Ganapathisubramani, B., Hutchins, N., Monty, J. P., Chung, D. & Marusic, I.2012Amplitude and frequency modulation in wall turbulence. J. Fluid Mech.712, 61-91. · Zbl 1275.76138
[29] Geng, C., He, G., Wang, Y., Xu, C., Lozano-Durán, A. & Wallace, J. M.2015Taylor’s hypothesis in turbulent channel flow considered using a transport equation analysis. Phys. Fluids27 (2), 025111.
[30] Grant, H. L.1958The large eddies of turbulent motion. J. Fluid Mech.4 (2), 149-190.
[31] Guala, M., Hommema, S. E. & Adrian, R. J.2006Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech.554, 521-542. · Zbl 1156.76316
[32] Hutchins, N. & Marusic, I.2007Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech.579, 1-28. · Zbl 1113.76004
[33] Hutchins, N., Monty, J. P., Ganapathisubramani, B., Ng, H. C. H. & Marusic, I.2011Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer. J. Fluid Mech.673, 255-285. · Zbl 1225.76161
[34] Hwang, Y. & Cossu, C.2010aAmplification of coherent streaks in the turbulent Couette flow: an input-output analysis at low Reynolds number. J. Fluid Mech.643, 333-348. · Zbl 1189.76191
[35] Hwang, Y. & Cossu, C.2010bLinear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow. J. Fluid Mech.664, 51-73. · Zbl 1221.76104
[36] Illingworth, S. J., Monty, J. P. & Marusic, I.2018Estimating large-scale structures in wall turbulence using linear models. J. Fluid Mech.842, 146-162. · Zbl 1419.76392
[37] Jiménez, J.2013How linear is wall-bounded turbulence?Phys. Fluids25 (11), 110814.
[38] Jiménez, J.2018Coherent structures in wall-bounded turbulence. J. Fluid Mech.842, P1. · Zbl 1419.76316
[39] Jiménez, J., Del Álamo, J. C. & Flores, O.2004The large-scale dynamics of near-wall turbulence. J. Fluid Mech.505, 179-199. · Zbl 1065.76552
[40] Jovanović, M. R. & Bamieh, B.2005Componentwise energy amplification in channel flows. J. Fluid Mech.534, 145-183. · Zbl 1074.76016
[41] De Kat, R. & Ganapathisubramani, B.2015Frequency-wavenumber mapping in turbulent shear flows. J. Fluid Mech.783, 166-190. · Zbl 1382.76123
[42] Kim, J. & Hussain, F.1993Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids A5 (3), 695-706.
[43] Kim, J., Moin, P. & Moser, R.1987Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech.177, 133-166. · Zbl 0616.76071
[44] Kreplin, H. & Eckelmann, H.1979Propagation of perturbations in the viscous sublayer and adjacent wall region. J. Fluid Mech.95 (2), 305-322.
[45] Krogstad, P., Kaspersen, J. H. & Rimestad, S.1998Convection velocities in a turbulent boundary layer. Phys. Fluids10 (4), 949-957.
[46] Lee, M. & Moser, R. D.2015Direct numerical simulation of turbulent channel flow up to Re_𝜏 = 5200. J. Fluid Mech.774, 395-415.
[47] Lehew, J., Guala, M. & Mckeon, B. J.2010 A study of convection velocities in a zero pressure gradient turbulent boundary layer. In Proceedings of the 40th Fluid Dynamics Conference and Exhibit, Chicago, Illinois, AIAA Paper 2010-4474.
[48] Lehew, J., Guala, M. & Mckeon, B. J.2011A study of the three-dimensional spectral energy distribution in a zero pressure gradient turbulent boundary layer. Exp. Fluids51 (4), 997-1012.
[49] Lin, C. C.1953On Taylor’s hypothesis and the acceleration terms in the Navier-Stokes equations. Q. Appl. Maths10 (4), 295-306. · Zbl 0050.19502
[50] Liu, C. & Gayme, D. F.2019Convective velocities of vorticity fluctuations in turbulent channel flows: an input-output approach. In Proceedings of the Eleventh International Symposium on Turbulence and Shear Flow Phenomenon, Southampton, UK.
[51] Lozano-Durán, A. & Jiménez, J.2014Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades. J. Fluid Mech.759, 432-471.
[52] Luhar, M., Sharma, A. S. & Mckeon, B. J.2014On the structure and origin of pressure fluctuations in wall turbulence: predictions based on the resolvent analysis. J. Fluid Mech.751, 38-70.
[53] Lumley, J. L.1965Interpretation of time spectra measured in high-intensity shear flows. Phys. Fluids8 (6), 1056-1062. · Zbl 0139.22103
[54] Madhusudanan, A., Illingworth, S. J. & Marusic, I.2019Coherent large-scale structures from the linearized Navier-Stokes equations. J. Fluid Mech.873, 89-109. · Zbl 1419.76321
[55] Marusic, I. & Heuer, W. D. C.2007Reynolds number invariance of the structure inclination angle in wall turbulence. Phys. Rev. Lett.99 (11), 114504.
[56] Marusic, I., Mckeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J. & Sreenivasan, K. R.2010Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids22 (6), 065103. · Zbl 1190.76086
[57] Marusic, I. & Monty, J. P.2019Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech.51, 49-74. · Zbl 1412.76038
[58] Mathis, R., Hutchins, N. & Marusic, I.2009aLarge-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech.628, 311-337. · Zbl 1181.76008
[59] Mathis, R., Monty, J. P., Hutchins, N. & Marusic, I.2009bComparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows. Phys. Fluids21 (11), 111703. · Zbl 1183.76346
[60] Mckeon, B. J.2017The engine behind (wall) turbulence: perspectives on scale interactions. J. Fluid Mech.817, P1. · Zbl 1383.76239
[61] Mckeon, B. J. & Sharma, A. S.2010A critical-layer framework for turbulent pipe flow. J. Fluid Mech.658, 336-382. · Zbl 1205.76138
[62] Moarref, R., Jovanović, M. R., Tropp, J. A., Sharma, A. S. & Mckeon, B. J.2014A low-order decomposition of turbulent channel flow via resolvent analysis and convex optimization. Phys. Fluids26 (5), 051701.
[63] Moarref, R., Sharma, A. S., Tropp, J. A. & Mckeon, B. J.2013Model-based scaling of the streamwise energy density in high-Reynolds-number turbulent channels. J. Fluid Mech.734, 275-316. · Zbl 1294.76181
[64] Monty, J. P., Stewart, J. A., Williams, R. C. & Chong, M. S.2007Large-scale features in turbulent pipe and channel flows. J. Fluid Mech.589, 147-156. · Zbl 1141.76316
[65] Morra, P., Semeraro, O., Henningson, D. S. & Cossu, C.2019On the relevance of Reynolds stresses in resolvent analyses of turbulent wall-bounded flows. J. Fluid Mech.867, 969-984. · Zbl 1415.76355
[66] Panton, R. L. & Linebarger, J. H.1974Wall pressure spectra calculations for equilibrium boundary layers. J. Fluid Mech.65 (2), 261-287.
[67] Perry, A. E. & Chong, M. S.1982On the mechanism of wall turbulence. J. Fluid Mech.119, 173-217. · Zbl 0517.76057
[68] Perry, A. E., Henbest, S. & Chong, M. S.1986A theoretical and experimental study of wall turbulence. J. Fluid Mech.165, 163-199. · Zbl 0597.76052
[69] Pope, S. B.2000Turbulent Flows. Cambridge University Press. · Zbl 0966.76002
[70] Pujals, G., García-Villalba, M., Cossu, C. & Depardon, S.2009A note on optimal transient growth in turbulent channel flows. Phys. Fluids21 (1), 015109. · Zbl 1183.76425
[71] Renard, N. & Deck, S.2015On the scale-dependent turbulent convection velocity in a spatially developing flat plate turbulent boundary layer at Reynolds number Re_𝜃 = 13 000. J. Fluid Mech.775, 105-148. · Zbl 1403.76026
[72] Reynolds, W. C. & Hussain, A. K. M. F.1972The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech.54 (2), 263-288.
[73] Schmid, P. J. & Henningson, D. S.2001Stability and Transition in Shear Flows. Springer Science & Business Media. · Zbl 0966.76003
[74] Sharma, A. S. & Mckeon, B. J.2013On coherent structure in wall turbulence. J. Fluid Mech.728, 196-238. · Zbl 1291.76173
[75] Sharma, A. S., Moarref, R. & Mckeon, B. J.2017Scaling and interaction of self-similar modes in models of high Reynolds number wall turbulence. Phil. Trans. R. Soc. Lond. A375 (2089), 20160089. · Zbl 1404.76129
[76] Smits, A. J., Mckeon, B. J. & Marusic, I.2011High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech.43 (1), 353-375. · Zbl 1299.76002
[77] Squire, D. T., Hutchins, N., Morrill-Winter, C., Schultz, M. P., Klewicki, J. C. & Marusic, I.2017Applicability of Taylor’s hypothesis in rough-and smooth-wall boundary layers. J. Fluid Mech.812, 398-417. · Zbl 1383.76247
[78] Taylor, G. I.1938The spectrum of turbulence. Proc. R. Soc. Lond. A164 (919), 476-490. · JFM 64.1454.02
[79] Townsend, A. A.1961Equilibrium layers and wall turbulence. J. Fluid Mech.11 (1), 97-120. · Zbl 0127.42602
[80] Townsend, A. A.1976The Structure of Turbulent Shear Flow. Cambridge University Press. · Zbl 0325.76063
[81] Trefethen, L. N.2000Spectral Methods in MATLAB. Society for Industrial and Applied Mathematics (SIAM). · Zbl 0953.68643
[82] Vadarevu, S. B., Symon, S., Illingworth, S. J. & Marusic, I.2019Coherent structures in the linearized impulse response of turbulent channel flow. J. Fluid Mech.863, 1190-1203. · Zbl 1415.76366
[83] Weideman, J. A. C. & Reddy, S. C.2000A MATLAB differentiation matrix suite. ACM Trans. Math. Softw.26 (4), 465-519.
[84] Willmarth, W. W. & Wooldridge, C. E.1962Measurements of the fluctuating pressure at the wall beneath a thick turbulent boundary layer. J. Fluid Mech.14 (2), 187-210. · Zbl 0106.40203
[85] Wills, J. A. B.1964On convection velocities in turbulent shear flows. J. Fluid Mech.20 (3), 417-432. · Zbl 0139.22102
[86] Yang, X. I. A. & Howland, M. F.2018Implication of Taylor’s hypothesis on measuring flow modulation. J. Fluid Mech.836, 222-237. · Zbl 1419.76334
[87] Zaman, K. B. M. Q. & Hussain, A. K. M. F.1981Taylor hypothesis and large-scale coherent structures. J. Fluid Mech.112, 379-396.
[88] Zare, A., Jovanović, M. R. & Georgiou, T. T.2017Colour of turbulence. J. Fluid Mech.812, 636-680. · Zbl 1383.76303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.