×

FE modelling with strong discontinuities for 3D tensile and shear fractures: application to underground excavation. (English) Zbl 1439.74418

Summary: A 3D numerical model with strong discontinuities implemented within the Enhanced Finite Element Method (E-FEM) is developed to address multi-cracking problems. Two failure criteria are proposed for two (tensile and shear) fracture kinematics; namely an anisotropic Mohr-Coulomb criterion with sliding and an anisotropic principal strain criterion with pure opening. This model is used to reproduce induced fracture networks around drifts after an underground excavation. A transversely isotropic behaviour is considered for the host rock. The influence of the anisotropy of rock properties and the in situ stress field on the induced fractures and the convergence of drifts are also studied.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74R10 Brittle fracture
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74L10 Soil and rock mechanics

Software:

COM-MAT-FAIL
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Armand, G.; Leveau, F.; Nussbaum, C.; de la Vaissiere, R.; Noiret, A.; Jaeggi, D.; Landrein, P.; Righini, C., Geometry and properties of the excavation induced fractures at the meuse/haute-marne url drifts, Rock. Mech. Rock. Eng., 47, 21-41 (2014)
[2] Jia, Y.; Bian, H. B.; Duveau, G.; Su, K.; Shao, J. F., Hydromechanical modelling of shaft excavation in meuse/haute-marne laboratory, Phys. Chem. Earth, 33, 422-435 (2008)
[3] Référentiel des matériaux d’un stockage de déchets à haute activité et à vie longue, Andra, 2005.; Référentiel des matériaux d’un stockage de déchets à haute activité et à vie longue, Andra, 2005.
[4] Kanninen, M. F.; Brust, F. W.; Ahmad, J.; Abou-Sayed, I. S., The numerical simulation of crack growth in weld-induced residual stress fields, (Kula, E.; Weiss, V., Residual Stress and Stress Relaxation (1982), Plenum Press: Plenum Press New York), 975-986
[5] Liaw, B. M.; Kobayashi, A. S.; Emery, A. F., Double nodding technique for mixed mode crack propagation studies, Internat. J. Numer. Methods Engrg., 20, 967-977 (1984) · Zbl 0528.73073
[6] Rashid, M. M., The arbitrary local mesh replacement method: an alternative to remeshing for crack propagation analysis, Comput. Methods Appl. Mech. Engrg., 154, 133-150 (1998) · Zbl 0939.74071
[7] Seyedi, M.; Taheri, S.; Hild, F., Numerical modeling of crack propagation and shielding effects in a striping network, Nucl. Eng. Des., 236, 954-964 (2006)
[8] Aliabadi, M. H., A new generation of boundary element methods in fracture mechanics, Nucl. Eng. Des., 86, 91-125 (1997)
[9] Charlotte, M.; Laverne, J.; Marigo, J. J., Initiation of cracks with cohesive force models: a variational approach, Eur. J. Mech. A Solids, 25, 649-669 (2006) · Zbl 1187.74159
[10] Pijaudier-Cabot, G.; Bazant, Z., Nonlocal damage theory, J. Eng. Mech., 113, 1512-1533 (1987)
[11] Mazars, J.; Pijaudier-Cabot, G., Continuum damage theory-application to concrete, J. Eng. Mech., 115, 2, 345-365 (1989)
[12] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 46, 131-150 (1999) · Zbl 0955.74066
[13] Oliver, J., Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part. 1: Fundamentals. Part. 2: Numerical simulation, Internat. J. Numer. Methods Engrg., 39, 3575-3623 (1996) · Zbl 0888.73018
[14] Wells, G. N.; Sluys, L. J., A new method for modelling cohesive cracks using finite elements, Internat. J. Numer. Methods Engrg., 50, 2667-2682 (2001) · Zbl 1013.74074
[15] Jirásek, M., Comparative study on finite elements with embedded discontinuities, Comput. Methods Appl. Mech. Engrg., 188, 307-330 (2000) · Zbl 1166.74427
[16] Simo, J. C.; Oliver, J.; Armero, F., An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids, Comput. Mech., 12, 277-296 (1993) · Zbl 0783.73024
[17] Ortiz, M.; Leroy, Y.; Needleman, A., A finite element method for localized failure analysis, Comput. Methods Appl. Mech. Engrg., 61, 2, 189-214 (1987) · Zbl 0597.73105
[18] Hill, R., A general theory of uniqueness and stability in elastic-plastic solids, J. Mech. Phys. Solids, 6, 236-2349 (1958) · Zbl 0091.40301
[19] Rudnicki, J. W.; Rice, J. R., Conditions for the localization of deformation in pressure-sensitive dilatant materials, J. Mech. Phys. Solids, 23, 371-394 (1975)
[20] Pietruszczak, S.; Mróz, Z., Finite element analysis of deformation of strain-softening materials, Internat. J. Numer. Methods Engrg., 17, 327-334 (1981) · Zbl 0461.73063
[21] Bazant, Z.; Belytschko, T. B., Wave propagation in strain-softening bar: exact solution, J. Eng. Mech., 111, 381-389 (1985)
[22] Peerlings, R. H.; De Borst, R.; Brekelmans, W.; De Vree, J.; Spee, I., Some observations on localisation in non-local and gradient damage models, Eur. J. Mech. A Solids, 15, 6, 937-953 (1996) · Zbl 0891.73055
[23] Oliver, J.; Huespe, A. E.; Sánchez, P. J., A comparative study on finite elements for capturing strong discontinuities: E-FEM vs x-FEM, Comput. Methods Appl. Mech. Engrg., 195, 37-40, 4732-4752 (2006) · Zbl 1144.74043
[24] Callari, C.; Armero, F., Analysis and numerical simulation of strong discontinuities in finite strain poroplasticity, Comput. Methods Appl. Mech. Engrg., 193, 2941-2986 (2004) · Zbl 1067.74519
[25] Callari, C.; Armero, F.; Abati, A., Strong discontinuities in partially saturated poroplastic solids, Comput. Methods Appl. Mech. Engrg., 199, 1513-1535 (2010) · Zbl 1231.74105
[26] Brancherie, D.; Ibrahimbegovic, A., Novel isotropic continuum-discrete damage model capable of representing localized failure of massive structures, Eng. Comput., 26, 100-127 (2009) · Zbl 1257.74138
[27] Oliver, J.; Dias, I. F.; Huespe, A. E., Crack-path field and strain-injection techniques in computational modeling of propagating material failure, Comput. Methods Appl. Mech. Engrg (2014) · Zbl 1296.74102
[28] Oliver, J.; Caicedo, M.; Roubin, E.; Huespe, A.; Hernández, J., Continuum approach to computational multiscale modeling of propagating fracture, Comput. Methods Appl. Mech. Engrg., 294, 384-427 (2015) · Zbl 1423.74062
[29] Roubin, E.; Vallade, A.; Benkemoun, N.; Colliat, J.-B., Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method, Int. J. Solids Struct., 52, 180-196 (2015)
[30] Simo, J. C.; Oliver, J., A New Approach to the Analysis an Simulation of Strain Softening in Solids (1994), Springer-Verlag Berlin and Heidelberg GmbH & Co. KGy
[31] Wells, G. N.; Sluys, L. J., Three-dimensional embedded discontinuity model for brittle fracture, Int. J. Solids Struct., 38, 897-913 (2001) · Zbl 1004.74065
[32] Oliver, J., On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equations, Int. J. Solids Struct., 37, 48-50, 7207-7229 (2000) · Zbl 0994.74004
[33] Washizu, K., Variational Methods in Elasticity and Plasticity (1982), Pergamon Press: Pergamon Press New York · Zbl 0164.26001
[34] Simo, J. C.; Rifai, M., A class of mixed assumed strain methods and the method of incompatible modes, Internat. J. Numer. Methods Engrg, 29, 1595-1638 (1990) · Zbl 0724.73222
[35] Dvorkin, E. N.; Cuitino, A. M.; Gioia, G., Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions, Internat. J. Numer. Methods. Engrg., 30, 541-564 (1990) · Zbl 0729.73209
[36] Wilson, E. L., The static condensation algorithm, Internat. J. Numer. Methods Engrg., 8, 198-203 (1974)
[37] Matthies, H.; Strang, G., The solution of nonlinear finite element equations, Internat. J. Numer. Methods Engrg., 14, 11, 1613-1626 (1979) · Zbl 0419.65070
[38] Bai, Y.; Wierzbicki, T., Application of extended mohr-coulomb criterion to ductile fracture, Int. J. Fract., 161, 1-20 (2009) · Zbl 1273.74494
[39] Wileveau, Y.; Cornet, F. H.; Desroches, J.; Blumling, P., Complete in situ stress determination in an argillite sedimentary formation, Phys. Chem. Earth, 32, 866-878 (2007)
[40] Seyedi, D. M.; Armand, G.; Noiret, A., “transverse action” — a model benchmark exercise for numerical analysis of the callovo-oxfordian claystone hydromechanical response to excavation operations, Comput. Geotech. (2016), submitted for publication in the special issue on “Numerical analysis of the hydromechanical response of Callovo-Oxfordian claystone in deep excavations”
[41] Pardoen, B.; Seyedi, D. M.; Collin, F., Shear banding modelling in cross-anisotropic rocks, Int. J. Solids Struct., 72, 63-87 (2015)
[42] Yao, C.; Shao, J. F.; Jiang, Q. H.; Zhou, C. B., Numerical study of excavation induced fractures using an extended rigid block spring method, Comput. Geotech. (2016), submitted for publication in the special issue on “Numerical analysis of the hydromechanical response of Callovo-Oxfordian claystone in deep excavations”
[43] Chen, L.; Shao, J. F.; Zhu, Q. Z.; Duveau, G., Induced anisotropic damage and plasticity in initially anisotropic sedimentary rocks, Int. J. Rock Mech. Min. Sci., 51, 13-23 (2012)
[44] Huang, Y.; Xie, S. Y.; Shao, J. F., An experimental study of crack growth in claystones, Eur. J. Environ. Civil Eng., 18, 307-314 (2014)
[45] Guayacán-Carrillo, L. M.; Sulem, J.; Seyedi, D. M.; Ghabezloo, S.; Noiret, A.; Armand, G., Analys of long-term anisotropic convergence in drifts excavated in callovo-oxfordian claystone, Rock. Mech. Rock. Eng, 49, 97-114 (2016)
[46] Coussy, O., Poromechanics (2005), Wiley · Zbl 1120.74447
[47] Benkemoun, N.; Gelet, R.; Roubin, E.; Colliat, J. B., Poroelastic two-phase material modeling: theoretical formulation and embedded finite element method implementation, Int. J. Numer. Anal. Methods Geomech., 39, 1255-1275 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.