×

Explicit, ninth order, two step methods for solving inhomogeneous linear problems \(x''(t)= \Lambda x(t)+f(t)\). (English) Zbl 1436.65085

Summary: Here we consider the second order Inhomogeneous Linear Initial Value Problems with constant coefficients. Two-step hybrid methods (i.e. of Numerov-type) are considered for addressing this problem. A special set of order conditions is given and solved for derivation a low cost new method. Actually, we manage to save one stage (function evaluation) per step for this type of problems in comparison with the best existed methods. This is crucial as demonstrated in various numerical tests where our new proposal outperforms standard methods in the relevant literature.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Butcher, J. C., Implicit Runge-Kutta processes, Math. Comput., 18, 50-64 (1964) · Zbl 0123.11701
[2] Butcher, J. C., On Runge-Kutta processes of high order, J. Aust. Math. Soc., 4, 179-194 (1964) · Zbl 0244.65046
[3] Enright, W. H., The efficient solution of linear constant-coefficient systems of differential equations, Simulation, 30, 129-133 (1978) · Zbl 0386.34014
[4] Famelis, I. Th.; Tsitouras, Ch., Symbolic derivation of order conditions for hybrid Numerov-type methods solving \(y'' = f(x, y)\), J. Comput. Appl. Math., 218, 543-555 (2008) · Zbl 1143.65055
[5] Katsikis, V. N.; Papakostas, S. N.; Tsitmidelis, S.; Tsitouras, Ch., Evolutionary generation of explicit two step methods for second order linear IVPs, AIP Conf. Proc., 1738, Article 480038 pp. (2016)
[6] Kovalnogov, V. N.; Simos, T. E.; Tsitouras, Ch., Ninth order, explicit, two step methods for second order inhomogeneous linear IVPs, Math. Methods Appl. Sci. (2020) · Zbl 1451.65086
[7] Li, Jingjing; Lu, Ke; Huang, Zi; Zhu, Lei; Tao Shen, Heng, Heterogeneous domain adaptation through progressive alignment, IEEE Trans. Neural Netw. Learn. Syst., 30, 1381-1391 (2018)
[8] Liu, Chenglian; Hsu, Chie-Wen; Tsitouras, Ch.; Simos, T. E., Hybrid Numerov-type methods with coefficients trained to perform better on classical orbits, Bull. Malays. Math. Soc., 42, 2119-2134 (2019) · Zbl 1437.65067
[9] Luo (Luo Chao), C.; Tan (Tan, Chenhao), C. H.; Wang (Wang, Xingyuan), X. Y.; Zheng (Zheng, Yuanjie), Y. J., An evolving recurrent interval type-2 intuitionistic fuzzy neural network for online learning and time series prediction, Appl. Soft Comput., 78, 150-163 (2019)
[10] Ma, L.; Huo, X.; Zhao, X.; Niu, B.; Zong, G., Adaptive neural control for switched nonlinear systems with unknown backlash-like hysteresis and output dead-zone, Neurocomputing, 357, 203-214 (2019)
[11] Niu, Ben; Wang, Ding; Alotaibi, Naif D.; Alsaadi, Fuad E., Adaptive neural state-feedback tracking control of stochastic nonlinear switched systems: an average dwell-time method, IEEE Trans. Neural Netw. Learn. Syst., 30, 1076-1087 (2019)
[12] Papakostas, S. N.; Tsitouras, Ch., High phase-lag order Runge-Kutta and Nyström pairs, SIAM J. Sci. Comput., 21, 747-763 (1999) · Zbl 0952.65054
[13] Shampine, L. F., Cheaper integration of linear systems, Simulation, 20, 17 (1973)
[14] Simos, T. E.; Tsitouras, Ch., Evolutionary generation of high order, explicit, two step methods for second order linear IVPs, Math. Methods Appl. Sci., 40, 6276-6284 (2017) · Zbl 1387.65066
[15] Sui, Xiaodan; Zheng, Yuanjie; Wei, Benzheng; Bi, Hongsheng; Wu, Jianfeng; Pan, Xuemei; Yin, Yilong; Zhang, Shaoting, Choroid segmentation from optical coherence tomography with graph edge weights learned from deep convolutional neural networks, Neurocomputing, 237, 332-341 (2017)
[16] Tsitouras, Ch., Explicit two-step methods for second order linear IVPs, Comput. Math. Appl., 43, 943-949 (2002) · Zbl 1050.65071
[17] Tsitouras, Ch., Explicit Numerov type methods with reduced number of stages, Comput. Math. Appl., 45, 37-42 (2003) · Zbl 1035.65078
[18] Tsitouras, Ch.; Famelis, I. Th., Symbolic derivation of Runge-Kutta-Nyström order conditions, J. Math. Chem., 46, 896-912 (2009) · Zbl 1185.65127
[19] Tsitouras, Ch.; Simos, T. E., Trigonometric fitted explicit Numerov type method with vanishing phase-lag and its first and second derivatives, Mediterr. J. Math., 15, Article 168 pp. (2018) · Zbl 1402.65063
[20] Tsitouras, Ch.; Simos, T. E., On ninth order, explicit Numerov type methods with constant coefficients, Mediterr. J. Math., 15, Article 46 pp. (2018) · Zbl 1446.65046
[21] Zhang (Zhang, Huaxiang), H. X.; Ji (Ji, Hua), H.; Wang (Wang, Xiaoqin), X. Q., Transfer learning from unlabeled data via neural networks, Neural Process. Lett., 36, 173-187 (2012)
[22] Zingg, D. W.; Chisholm, T. T., Runge-Kutta methods for linear ordinary differential equations, Appl. Numer. Math., 31, 227-238 (1999) · Zbl 0935.65077
[23] (2017), Wolfram Research, Inc.: Wolfram Research, Inc. Champaign, Illinois, Mathematica, version 11.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.