×

Parallel fast isogeometric L2 projection solver with Galois system for 3D tumor growth simulations. (English) Zbl 1440.74421

Summary: We present a parallel solver for isogeometric L2 projections implemented in GALOIS system. We use the solver for isogeometric finite element method simulations of tumor growth. First, we describe the dependencies between the quantities describing the melanoma tumor growth in three-dimensions. Later, we derive the system of partial differential equations modeling the tumor dynamics, including tumor cell density, tumor angiogenic factor, flux, pressure, extracellular and degraded extracellular matrices. The continuous model is coupled every ten-time steps with graph grammar model describing the vasculature network. The resulting system of PDEs is solved with our parallel solver over the shared memory Linux cluster node. We show high computational efficiency and accuracy of our model and we demonstrate its perfect parallel scalability with the number of CPU cores. We discuss the application of our solver in predictive oncology.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65D07 Numerical computation using splines
74L15 Biomechanical solid mechanics
92C30 Physiology (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] E.A.B.F. Lima, J.T. Oden, B. Wohlmuth, A. Shamoradi, D.A. Hormuth II, T.E. Yankeelov, L. Scarabosio, T. Horger, Selection and Validation of Predictive Models of Radiation Effects on Tumor Growth Based on Noninvasive Imaging Data, ICES-Report 17-14, 2017, pp. 1-31. · Zbl 1439.92110
[2] Dzwinel, W.; Kłusek, A.; Vasilyev, O. V., Supermodeling in simulation of melanoma progression, Proc. Comput. Sci., 80, 999-1010 (2016)
[3] Karimkhani, C.; Green, A. C.; Nijsten, T.; Weinstock, M. A.; Dellavalle, R. P.; Naghavi, M.; Fitzmaurice, C., The global burden of melanoma: results from the Global Burden of Disease Study 2015, Br. J. Dermatol., 177, 1, 134-140 (2017)
[4] Key Statistics for Melanoma Skin Cancer, https://www.cancer.org/cancer/melanoma-skin-cancer/about/key-statistics.html.
[5] Benson, D. J.; Bazilevs, Y.; De Luycker, E.; Hsu, M.-C.; Scott, M.; Hughes, T. J.R.; Belytschko, T., A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to X-FEM, Internat. J. Numer. Methods Engrg., 83, 765-785 (2010) · Zbl 1197.74177
[6] L. Dedè, T.J.R. Hughes, S. Lipton, V.M. Calo, Structural topology optimization with isogeometric analysis in a phase field approach, USNCTAM2010, 16th US National Congree of Theoretical and Applied Mechanics.
[7] Dedè, L.; Borden, M. J.; Hughes, T. J.R., Isogeometric Analysis for Topology Optimization with a Phase Field Model, ICES REPORT 11-29 (2011), The Institute for Computational Engineering and Sciences, The University of Texas at Austin
[8] Gómez, H.; Calo, V. M.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg., 197, 4333-4352 (2008) · Zbl 1194.74524
[9] Gómez, H.; Hughes, T. J.R.; Nogueira, X.; Calo, V. M., Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations, Comput. Methods Appl. Mech. Engrg., 199, 1828-1840 (2010) · Zbl 1231.76191
[10] Hsu, M.-C.; Akkerman, I.; Bazilevs, Y., High-performance computing of wind turbine aerodynamics using isogeometric analysis, Comput. & Fluids, 49, 1, 93-100 (2011) · Zbl 1271.76276
[11] Duddu, R.; Lavier, L.; Hughes, T. J.R.; Calo, V. M., A finite strain Eulerian formulation for compressible and nearly incompressible hyper-elasticity using high-order NURBS elements, Int. J. Numer. Methods Eng., 89, 6, 762-785 (2012) · Zbl 1242.74109
[12] Chang, K.; Hughes, T. J.R.; Calo, V. M., Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall, Comput. & Fluids, 68, 94-104 (2012) · Zbl 1365.76079
[13] Hossain, S.; Hossainy, S. F.A.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R., Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls, Comput. Mech. (2011) · Zbl 1366.92059
[14] Calo, V. M.; Brasher, N.; Bazilevs, Y.; Hughes, T. J.R., Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow, Comput. Mech., 43, 1, 161-177 (2008) · Zbl 1169.76066
[15] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L. Curfman McInnes, K. Rupp, B.F. Smith, H. Zhang, PETSc Web Page, http://www.mcs.anl.gov/petsc, 2014.
[16] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L. Curfman McInnes, K. Rupp, B.F. Smith, H. Zhang, PETSc User Manual, Argonne National Laboratory ANL-95/11 - Revision 34, 2013.
[17] Łoś, M.; Woźniak, M.; Paszyński, M.; Lenharth, A.; Pingali, K., IGA-ADS : Isogeometric Analysis FEM using ADS solver, Comput. Phys. Commun, 217, 99-116 (2017) · Zbl 1411.65132
[18] Carey, G.; Oden, J. T., Finite Elements: Computational Aspects (1984), Prentice Hall · Zbl 0558.73064
[19] Welter, M.; Rieger, H., Physical determinants of vascular network remodeling during tumor growth, Eur. Phys. J. E, 33, 2, 149-163 (2010)
[20] Łoś, M.; Paszyński, M.; Kłusek, A.; Dzwinel, W., Application of fast isogeometric L2 projection solver for tumor growth simulations, Comput. Methods Appl. Mech. Engrg., 316, 1257-1269 (2017) · Zbl 1439.92004
[21] Welter, M.; Rieger, H., Physical determinants of vascular network remodeling during tumor growth, Eur. Phys. J. E, 33, 2, 149-163 (2010)
[22] Chaplain, M. A.; McDougall, S. R.; Anderson, A. R.A., Mathematical modeling of tumor induced angiogenesis, Annu. Rev. Biomed. Eng., 8, 233-257 (2006)
[23] Dzwinel, W.; Kłusek, A.; Paszyński, M., A concept of a prognostic system for personalized anti-tumor therapy based on supermodeling, Proc. Comput. Sci., 108, 1832-1841 (2017)
[24] Evans, J. A.; Hiemstra, R. R.; Hughes, T. J.R.; Reali, A., Explicit higher-order accurate isogeometric collocation methods for structural dynamics, Comput. Methods Appl. Mech. Engrg., 338, 208-240 (2018) · Zbl 1440.74464
[25] Weeger, O., Isogeometric Finite Element Analysis of Nonlinear Structural Vibrations (2015), Technical University Kaiserslautern, (Ph.D. thesis)
[26] da Veiga, L. B.; Buffa, A.; Sangalli, G.; Vazquez, R., Mathematical analysis of variational isogeometric methods, Acta Numer., 23, 157-287 (2014) · Zbl 1398.65287
[27] Rupnick, M. A.; Stokes, C. L.; Williams, S. K.; Lauffenburger, D. A., Quantitative analysis of human microvessel endothelial cells using a linear under-agarose assay, Lab. Invest., 59, 363-372 (1998)
[28] Anderson, A. R.A.; Chaplain, M. A.J., Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Biol., 5, 60, 857-899 (1998) · Zbl 0923.92011
[29] Wcisło, R.; Dzwinel, W.; Yuen, D. A.; Dudek, A. Z., 3-D model of tumor progression based on complex automata driven by particle dynamics, J. Mol. Model., 15, 12, 1517-1539 (2009)
[30] Andasari, V.; Gerisch, A.; Lolas, G.; South, A. P.; Chaplain, M. A., Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation, J. Math. Biol., 63, 1, 141-171 (2011) · Zbl 1230.92022
[31] Woźniak, M.; Kuźnik, K.; Paszynski, M.; Pardo, D.; Calo, V. M., Computational cost estimates for parallel shared memory isogeometric multi-frontal solvers, Comput. Math. Appl., 67, 10, 1864-1883 (2014) · Zbl 1367.65257
[32] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M.A. Hassaan, R. Kaleem, T.H. Lee, A. Lenharth, R. Manevich, M. Mendez-Lojo, D. Prountzos, X. Sui, The tao of parallelism in algorithms, in: Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, 2011, pp. 12-25.
[33] Heath, M. T., A tale of two laws, Int. J High Perform. Comput. Appl., 29, 3, 320-330 (2015)
[34] Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenney, A.; Sorensen, D., LAPACK User Guide (1999), Society for Industrial and Applied Mathematic: Society for Industrial and Applied Mathematic Philadelphia · Zbl 0934.65030
[35] Boost C++ Libraries. http://www.boost.org.
[36] Galois Framework. http://iss.ices.utexas.edu/?p=projects/galois.
[37] GCC: Gnu Compiler Collection. https://gcc.gnu.org/.
[38] CMake. https://cmake.org/.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.