×

Existence, uniqueness, and approximation solutions to linearized Chandrasekhar equation with sharp bounds. (English) Zbl 1447.45002

Summary: This article continues to study the linearized Chandrasekhar equation. We use the Hilbert-type inequalities to accurately calculate the norm of the Fredholm integral operator and obtain the exact range for the parameters of the linearized Chandrasekhar equation to ensure that there is a unique solution to the equation in \(L^p\) space. A series of examples that can accurately calculate the norm of Fredholm integral operator shows that the Chandrasekhar kernel functions do not need to meet harsh conditions. As the symbolic part of the Chandrasekhar kernel function and the non-homogeneous terms satisfy the exponential decay condition, we yield a normed convergence rate of the approximation solution in \(L^p\) sense, which adds new results to the theory of radiation transfer in astrophysics.

MSC:

45B05 Fredholm integral equations
65R20 Numerical methods for integral equations

Software:

PDCO
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anselone, PM, Collectively Compact Operator Approximation Theory and Applications to Integral Equations (1971), Englewood Cliffs: Prentice-Hall Inc., Englewood Cliffs · Zbl 0228.47001
[2] Atkinson, KE, A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind (1976), Philadelphia: SIAM, Philadelphia · Zbl 0353.65069
[3] Atkinson, KE, The Numerical Solution of Integral Equations of the Second Kind (1997), Cambridge: Cambridge University Press, Cambridge · Zbl 0899.65077
[4] Atkinson, KE; Chien, D., Piecewise polynomial collocation for boundary integral equations, SIAM J. Sci. Comput., 16, 651-681 (1994) · Zbl 0826.65095 · doi:10.1137/0916040
[5] Atkinson, KE; Chien, D., A fast matrix-vector multiplication method for solving the radiosity equation, Adv. Comput. Math., 12, 151-174 (2000) · Zbl 0944.65144 · doi:10.1023/A:1018961001209
[6] Boffi, D., Finite element approximation of eigenvalue problems, Acta Numer., 19, 1-120 (2010) · Zbl 1242.65110 · doi:10.1017/S0962492910000012
[7] Bückner, H., A special method of successive approximations for Fredholm integral equations, Duke Math. J., 15, 197-206 (1948) · Zbl 0030.39201 · doi:10.1215/S0012-7094-48-01522-1
[8] Busbridge, IW, The Mathematics of Radiative Transfer, Cambridge Tracts in Mathematics (1960), Cambridge: Cambridge University Press, Cambridge · Zbl 0090.21405
[9] Chandrasekhar, S., Radiative Transfer (1950), London: Oxford University Press, London · Zbl 0037.43201
[10] Chang, D-C; Feng, S-Y, On the integral equations of Chandrasekhar type, J. Nonlinear Convex Anal., 19, 3, 525-541 (2018) · Zbl 1463.45025
[11] Chen, SS; Donoho, DL; Saunders, MA, Atomic decomposition by basis pursuit, SIAM J. Sci. Comput., 20, 1, 33-61 (1998) · Zbl 0919.94002 · doi:10.1137/S1064827596304010
[12] Chen, Z.; Xu, Y., The Petrov-Galerkin and iterated Petrov-Galerkin methods for second kind integral equations, SIAM J. Numer. Anal., 35, 406-434 (1998) · Zbl 0911.65143 · doi:10.1137/S0036142996297217
[13] Chen, Z.; Micchelli, CA; Xu, Y., Fast collocation methods for second kind integral equations, SIAM J. Numer. Anal., 40, 1, 344-375 (2002) · Zbl 1016.65107 · doi:10.1137/S0036142901389372
[14] Chen, Q.; Yang, B., A survey on the study of Hilbert-type inequalities, J. Inequalities Appl., 2015, 302 (2015) · Zbl 1336.26030 · doi:10.1186/s13660-015-0829-7
[15] Conte, D.; D’Ambrosio, R.; Paternoster, B., Advances on Collocation Based Numerical Methods for Ordinary Differential Equations and Volterra Integral Equations, Recent Advances in Computational and Applied Mathematics, 41-66 (2011), Dordrecht: Springer, Dordrecht · Zbl 1216.65097
[16] Dai, X.; Larson, DR, Wandering vectors for unitary systems and orthogonal wavelets, Mem. Am. Math. Soc., 134, 1 (1998) · Zbl 0990.42022
[17] Dancer, EN, On positive solutions of some pairs of differential equations, Trans. Am. Math. Soc., 284, 2, 729-743 (1984) · Zbl 0524.35056 · doi:10.1090/S0002-9947-1984-0743741-4
[18] Das, RN, Application of Wiener-Hopf technique for a new representation of X- and Y-functions, Astrophys. Space Sci., 61, 169-173 (1979) · Zbl 0393.45006 · doi:10.1007/BF00645800
[19] Das, RN, Exact solution of a problem in a stellar atmosphere using the Laplace transform and the Wiener-Hopf technique, Astrophys. Space Sci., 63, 155-170 (1979) · Zbl 0403.45016 · doi:10.1007/BF00647752
[20] Das, RN, Application of Wiener-Hopf technique to linear nonhomogeneous integral equations for a new representation of Chandrasekhar’s H-function in radiative transfer, its existence and uniqueness, J. Math. Anal. Appl., 337, 1366-1382 (2008) · Zbl 1141.45003 · doi:10.1016/j.jmaa.2007.04.040
[21] Dasgupta, SR, A new representation of the H-function of radiative transfer, Astrophys. Space Sci., 50, 187-203 (1977) · Zbl 0372.33012 · doi:10.1007/BF00648531
[22] Di, J.; Shi, Z., Approximate solution of the integral equation on the half line, J. Zhe Jiang Univ. Technol., 37, 326-331 (2009)
[23] Donoho, D.; Huo, X., Uncertainty principles and ideal atomic decomposition, IEEE Trans. Inf. Theory, 47, 7, 2845-2862 (2001) · Zbl 1019.94503 · doi:10.1109/18.959265
[24] Feng, S-Y; Chang, D-C, An existence and uniqueness result for parameterized integral equations with Chandrasekhar kernels, J. Nonlinear Convex Anal., 19, 12, 2053-2068 (2018) · Zbl 1463.45003
[25] Feng, S-Y; Chang, D-C, Exact bounds and approximating solutions to the Fredholm integral equations of Chandrasekhar type, Taiwan. J. Math., 23, 2, 409-425 (2019) · Zbl 1412.45004 · doi:10.11650/tjm/181108
[26] Fox, C., A solution of Chandrasekhar’s integral equation, Trans. Am. Math. Soc., 99, 285-291 (1961) · Zbl 0103.07503
[27] Gröchenig, K., Describing functions: atomic decompositions versus frames, Monatsh. Math., 112, 1, 1-42 (1991) · Zbl 0736.42022 · doi:10.1007/BF01321715
[28] Hardy, GH, Note on a theorem of Hilbert concerning series of positive term, Proc. Lond. Math. Soc., 23, 45-46 (1925) · JFM 51.0179.06
[29] Hardy, GH; Littlewood, JE; Pólya, G., Inequalities (1934), Cambridge: Cambridge University Press, Cambridge · Zbl 0010.10703
[30] Hiptmair, R., Finite elements in computational electromagnetism, Acta Numer., 11, 237-339 (2002) · Zbl 1123.78320 · doi:10.1017/S0962492902000041
[31] Jozi, M.; Karimi, S., Degenerate kernel approximation method for solving Hammerstein system of Fredholm integral equations of the second kind, J. Math. Model., 4, 2, 117-132 (2016) · Zbl 1355.65176
[32] Kaper, HG, A constructive approach to the solution of a class of boundary value problems of mixed type, J. Math. Anal. Appl., 63, 3, 691-718 (1978) · Zbl 0379.45022 · doi:10.1016/0022-247X(78)90066-5
[33] Koch, PE; Lyche, T.; Neamtu, M.; Schumaker, LL, Control curves and knot insertion for trigonometric splines, Adv. Comput. Math., 3, 4, 405-424 (1995) · Zbl 0925.65251 · doi:10.1007/BF03028369
[34] Kourganoff, VA, Basic Methods in Transfer Problems (1952), Oxford: Clarendon Press, Oxford · Zbl 0048.20105
[35] Kravchenko, V.F., Basarab, M.A.: Approximations by atomic functions and numerical methods for Fredholm integral equations of the second kind. Differ. Equ. 37(10), 1480-1490 (2001). Translated from Differentsial’nye Uravneniya 37(10), 1406-1414 (2001) · Zbl 1018.65149
[36] Kwapisz, M.; Turo, J., On the existence and convergence of successive approximations for some functional equations in a Banach space, J. Differ. Equ., 16, 298-318 (1974) · Zbl 0263.39005 · doi:10.1016/0022-0396(74)90017-5
[37] Lifanov, I.K.: The method of singular integral equations and a numerical experiment in mathematical physics, aerodynamics and the theory of elasticity and wave diffraction (in Russian). TOO, Yanus, Moscow (1995) · Zbl 0904.73001
[38] Lyche, T.; Winther, R., A stable recurrence relation for trigonometric B-splines, J. Approx. Theory, 25, 3, 266-279 (1979) · Zbl 0414.41005 · doi:10.1016/0021-9045(79)90017-0
[39] Mullikin, TW, Chandrasekhar’s X and Y equations, Trans. Am. Math. Soc., 113, 316-332 (1964) · Zbl 0124.05903
[40] Muskhelishvili, NI, Singular Integral Equations (1953), Groningen: Noordhoff, Groningen · Zbl 0051.33203
[41] Walter, GG, Wavelets and Other Orthogonal Systems with Applications (1994), Boca Raton: CRC Press, Boca Raton · Zbl 0866.42022
[42] Withers, CS; Nadarajah, S., Fredholm equations for non-symmetric kernels with applications to iterated integral operators, Appl. Math. Comput., 204, 1, 499-507 (2008) · Zbl 1163.45012
[43] Yang, B., On the Norm of Operator and Hilbert-Type Inequalities (2009), Beijing: Science Press, Beijing
[44] Yang, B., On the norm of an integral operator and applications, J. Math. Anal. Appl., 321, 182-192 (2006) · Zbl 1102.47036 · doi:10.1016/j.jmaa.2005.07.071
[45] Zorich, VA, Mathematical Analysis (Part II), 4th Corrected Edition, Moscow (2002) (2004), Berlin: Springer, Berlin · Zbl 1071.00003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.