×

Extended virtual element method for the Laplace problem with singularities and discontinuities. (English) Zbl 1441.74230

Summary: In this paper, we propose the extended virtual element method (X-VEM) to treat singularities and crack discontinuities that arise in the Laplace problem. The virtual element method (VEM) is a stabilized Galerkin formulation on arbitrary polytopal meshes, wherein the basis functions are implicit (virtual)—they are not known explicitly nor do they need to be computed within the problem domain. Suitable projection operators are used to decompose the bilinear form on each element into two parts: a consistent term that reproduces the first-order polynomial space and a correction term that ensures stability. A similar approach is pursued in the X-VEM with a few notable extensions. To capture singularities and discontinuities in the discrete space, we augment the standard virtual element space with an additional contribution that consists of the product of virtual nodal basis (partition-of-unity) functions with enrichment functions. For discontinuities, basis functions are discontinuous across the crack and for singularities a weakly singular enrichment function that satisfies the Laplace equation is chosen. For the Laplace problem with a singularity, we devise an extended projector that maps functions that lie in the extended virtual element space onto linear polynomials and the enrichment function, whereas for the discontinuous problem, the consistent element stiffness matrix has a block-structure that is readily computed. An adaptive homogeneous numerical integration method is used to accurately and efficiently (no element-partitioning is required) compute integrals with integrands that are weakly singular. Once the element projection matrix is computed, the same steps as in the standard VEM are followed to compute the element stabilization matrix. Numerical experiments are performed on quadrilateral and polygonal (convex and nonconvex elements) meshes for the problem of an \(L\)-shaped domain with a corner singularity and the problem of a cracked membrane under mode III loading, and results are presented that affirm the sound accuracy and demonstrate the optimal rates of convergence in the \(L^2\) norm and energy of the proposed method.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74R10 Brittle fracture

Software:

XFEM; PolyMesher
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Melenk, J. M.; Babuška, I., The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139, 289-314 (1996) · Zbl 0881.65099
[2] Babuška, I.; Melenk, J. M., The partition of unity method, Internat. J. Numer. Methods Engrg., 40, 727-758 (1997) · Zbl 0949.65117
[3] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 46, 1, 131-150 (1999) · Zbl 0955.74066
[4] Tabarraei, A.; Sukumar, N., Extended finite element method on polygonal and quadtree meshes, Comput. Methods Appl. Mech. Engrg., 197, 5, 425-438 (2008) · Zbl 1169.74634
[5] Zamani, A.; Eslami, M. R., Embedded interfaces by polytope FEM, Internat. J. Numer. Methods Engrg., 88, 715-748 (2011) · Zbl 1242.74176
[6] Song, C.; Ooi, E. T.; Natarajan, S., A review of the scaled boundary finite element method for two-dimensional linear elastic fracture mechanics, Eng. Fract. Mech., 187, 45-73 (2018)
[7] Chin, E. B.; Lasserre, J. B.; Sukumar, N., Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra, Comput. Mech., 56, 6, 967-981 (2015) · Zbl 1336.65020
[8] Chin, E. B.; Lasserre, J. B.; Sukumar, N., Modeling crack discontinuities without element-partitioning in the extended finite element method, Internat. J. Numer. Methods Engrg., 86, 11, 1021-1048 (2017)
[9] Beirão da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, L. D.; Russo, A., Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23, 119-214 (2013) · Zbl 1416.65433
[10] Grisvard, P., Elliptic Problems in Nonsmooth Domains (1985), Pitman Publishing, Inc.: Pitman Publishing, Inc. Boston, MA · Zbl 0695.35060
[11] Perugia, I.; Pietra, P.; Russo, A., A plane wave virtual element method for the Helmholtz problem, ESAIM Math. Model. Numer. Anal., 50, 3, 783-808 (2016) · Zbl 1343.65137
[12] Ahmad, B.; Alsaedi, A.; Brezzi, F.; Marini, L. D.; Russo, A., Equivalent projectors for virtual element methods, Comput. Math. Appl., 66, 376-391 (2013) · Zbl 1347.65172
[13] Beirão da Veiga, L.; Brezzi, F.; Marini, L. D.; Russo, A., The hitchhiker’s guide to the virtual element method, Math. Models Methods Appl. Sci., 24, 8, 1541-1573 (2014) · Zbl 1291.65336
[14] Benedetto, M. F.; Berrone, S.; Pieraccini, S.; Scialò, S., The virtual element method for discrete fracture network simulations, Comput. Methods Appl. Mech. Engrg., 280, 135-156 (2014) · Zbl 1423.74863
[15] Benedetto, M. F.; Berrone, S.; Scialò, S., A globally conforming method for solving flow in discrete fracture networks using the Virtual Element Method, Finite Elem. Anal. Des., 109, 23-36 (2016)
[16] Benedetto, M. F.; Caggiano, A. A.; Etse, G., Virtual elements and zero thickness interface-based approach for fracture analysis of heterogeneous materials, Comput. Methods Appl. Mech. Engrg., 338, 41-67 (2018) · Zbl 1440.74374
[17] Nguyen-Thanh, V. M.; Zhuang, X.; Ngyyen-Xuan, H.; Rabczuk, T.; Wriggers, P., A Virtual Element Method for 2D linear elastic fracture analysis, Comput. Methods Appl. Mech. Engrg., 340, 366-395 (2018) · Zbl 1440.74430
[18] Hansbo, A.; Hansbo, P., A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Comput. Methods Appl. Mech. Engrg., 193, 33-35, 3523-3540 (2004) · Zbl 1068.74076
[19] Areias, P. M.A.; Belytschko, T., A comment on the article ‘A finite element method for simulation of strong and weak discontinuities in solid mechanics’ by A. Hansbo and P. Hansbo [Comput. Methods Appl. Mech. Engrg. 193 (2004) 3523-3540], Comput. Methods Appl. Mech. Engrg., 195, 1275-1276 (2006) · Zbl 1378.74062
[20] Dolbow, J. E.; Devan, A., Enrichment of enhanced assumed strain approximations for representing strong discontinuities: addressing volumetric incompressibility and the discontinuous patch test, Internat. J. Numer. Methods Engrg., 59, 1, 47-67 (2004) · Zbl 1047.74055
[21] Beirão da Veiga, L.; Lovadina, C.; Russo, A., Stability analysis for the virtual element method, Math. Models Methods Appl. Sci., 27, 13, 2557-2594 (2017) · Zbl 1378.65171
[22] Brenner, S. C.; Guan, Q.; Sung, L.-Y., Some estimates for virtual element methods, Comput. Methods Appl. Math., 17, 4, 553-574 (2017) · Zbl 1434.65237
[23] Dassi, F.; Mascotto, L., Exploring high-order three dimensional virtual elements: Bases and stabilizations, Comput. Math. Appl., 75, 9, 3379-3401 (2018) · Zbl 1409.65090
[24] Mascotto, L., Ill-conditioning in the virtual element method: Stabilizations and bases, Numer. Methods Partial Differential Equations, 34, 4, 1258-1281 (2018) · Zbl 1407.65294
[25] Beirão da Veiga, L.; Brezzi, F.; Marini, D., Virtual elements for linear elasticity problems, SIAM J. Numer. Anal., 51, 2, 794-812 (2013) · Zbl 1268.74010
[26] Beirão da Veiga, L.; Dassi, F.; Russo, A., High-order virtual element method on polyhedral meshes, Comput. Math. Appl., 74, 1110-1122 (2017) · Zbl 1448.65215
[27] Sukumar, N.; Dolbow, J. E.; Moës, N., Extended finite element method in computational fracture mechanics: a retrospective examination, Int. J. Fract., 196, 1, 189-206 (2015)
[28] Benvenuti, E.; Chiozzi, A.; Manzini, G.; Sukumar, N., Numerical experiments with the extended virtual element method for the Laplace problem with strong discontinuitiesTech. Rep. LA-UR-18-23443 (2018), Los Alamos National Laboratory: Los Alamos National Laboratory Los Alamos, NM 87545, USA
[29] Duchon, J., Splines minimizing rotation-invariant semi-norms in Sobolev spaces, (Constructive Theory of Functions of Several Variables. Constructive Theory of Functions of Several Variables, Lecture Notes in Mathematics, vol. 571 (1977), Springer-Verlag: Springer-Verlag Berlin, Germany), 85-100
[30] Sommariva, A.; Vianello, M., Product Gauss cubature over polygons based on Green’s integration formula, BIT Numer. Math., 47, 2, 441-453 (2007) · Zbl 1122.65027
[31] Strouboulis, T.; Babuška, I.; Copps, K., The design and analysis of the generalized finite element method, Comput. Methods Appl. Mech. Engrg., 181, 1, 43-69 (2000) · Zbl 0983.65127
[32] Szabó, B.; Babuška, I., Finite Element Analysis (1991), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York, N.Y.
[33] Talischi, C.; Paulino, G.; Pereira, A.; Menezes, F., PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab, Struct. Multidiscip. Optim., 45, 3, 309-328 (2012) · Zbl 1274.74401
[34] Laborde, P.; Pommier, J.; Renard, Y.; Salaün, M., High-order extended finite element method for cracked domains, Internat. J. Numer. Methods Engrg., 64, 3, 354-381 (2005) · Zbl 1181.74136
[35] Beirão da Veiga, L.; Chernov, A.; Mascotto, L.; Russo, A., Exponential convergence of the hp virtual element method in presence of corner singularities, Numer. Math., 138, 581-613 (2018) · Zbl 1387.65117
[36] Mousavi, S. E.; Sukumar, N., Generalized Duffy transformation for integrating vertex singularities, Comput. Mech., 45, 2-3, 127-140 (2010)
[37] Béchet, E.; Minnebo, H.; Moës, N.; Burgardt, B., Improved implementation and robustness study of the X-FEM for stress analysis around cracks, Internat. J. Numer. Methods Engrg., 64, 8, 1033-1056 (2005) · Zbl 1122.74499
[38] Babuška, I.; Banerjee, U.; Kergrene, K., Strongly stable generalized finite element method: Application to interface problems, Comput. Methods Appl. Mech. Engrg., 327, 58-92 (2017) · Zbl 1439.74385
[39] Lehrenfeld, C.; Reusken, A., Optimal preconditioners for Nitsche-XFEM discretizations of interface problems, Numer. Math., 135, 2, 313-332 (2017) · Zbl 1360.65281
[40] Chin, E. B.; Sukumar, N., Modeling curved interfaces without element-partitioning in the extended finite element method, Internat. J. Numer. Methods Engrg. (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.