×

A differential quadrature hierarchical finite element method using Fekete points for triangles and tetrahedrons and its applications to structural vibration. (English) Zbl 1441.74260

Summary: A differential quadrature hierarchical finite element method (DQHFEM) using Fekete points was formulated for triangles and tetrahedrons and applied to structural vibration analyses. First, orthogonal polynomials on triangles and tetrahedrons that can be used as bases of the hierarchical finite element method (HFEM) were derived and simple formulas of transforming one dimensional non-uniform nodes to simplexes were presented. Then the non-uniform nodes were used as initial guesses to solve the Fekete points on simplexes through Newton-Raphson’s method together with the orthogonal polynomials. New differential quadrature (DQ) rules on simplexes were formulated using the HFEM bases and the Fekete points. The numbers of nodes or bases on different edges and faces and inside the body of the new DQ elements do not relate with each other like the HFEM that can freely assign different numbers of bases on different edges and faces and inside the body. So the new DQ method was named as a differential quadrature hierarchical (DQH) method that uses either interpolation functions or orthogonal polynomials as bases inside the element. Its weak form was named as the DQHFEM. Besides the DQH method and its weak form, a simple method of generating high quality linear and high order triangular and tetrahedral meshes from a single NURBS patch was presented. Numerical tests of the DQHFEM through structural vibration analyses showed that high accuracy results can be obtained using only a few nodes even on curvilinear domains using the DQH bases on both physical and geometric fields. It was concluded that wide applications of the DQH method and the DQHFEM to science and engineering are possible and commercial codes based on them are deserved to be developed.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74H45 Vibrations in dynamical problems in solid mechanics

Software:

LEBFEK
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195 (2005) · Zbl 1151.74419
[2] Zhong, H., Triangular differential quadrature and its application to elastostatic analysis of Reissner plates, Int. J. Solids Struct., 38, 2821-2832 (2001) · Zbl 0992.74080
[3] Zienkiewicz, O. C.; Irons, B. M.; Scott, F. C.; Campbell, J. S., Three-dimensional stress analysis, (Proc. Proc. IUTAM Symp. High Speed Computing of Elastic Structures (1970)), 413-431
[5] Bellman, R.; Casti, J., Differential quadrature and long term integration, J. Math. Anal. Appl., 235-238 (1971) · Zbl 0236.65020
[6] Zhong, H.; Hua, Y.; He, Y., Localized triangular differential quadrature, Numer. Methods Partial Differential Equations, 19, 682-692 (2003) · Zbl 1068.74093
[7] Karniadakis, G. E.; Sherwin, S., Spectral/hp Element Methods for Computational Fluid Dynamics (2005), Oxford Sciene Publications: Oxford Sciene Publications New York · Zbl 1116.76002
[8] Szabó, B.; Babuška, I., Finite Element Analysis (1991), John Wiley & Sons: John Wiley & Sons New York · Zbl 0792.73003
[9] Szabó, B. A.; Sahrmann, G. J., Hierarchic plate and shell models based on p-extension, Internat. J. Numer. Methods Engrg., 26, 1855-1881 (1988) · Zbl 0661.73048
[10] Zhu, D. C., Development of hierarchical finite element methods at BIAA, (The International Conference on Computational Mechanics (1986)), 123-128
[11] Zhong, H.; Yu, T., A weak form quadrature element method for plane elasticity problems, Appl. Math. Model., 33, 3801-3814 (2009) · Zbl 1205.74172
[12] Xing, Y.; Liu, B., High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain, Internat. J. Numer. Methods Engrg., 80, 1718-1742 (2009) · Zbl 1183.74328
[13] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons, Ltd: John Wiley & Sons, Ltd Singapore · Zbl 1378.65009
[15] Kansa, E. J., Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates, Comput. Math. Appl., 19, 127-145 (1990) · Zbl 0692.76003
[16] Kansa, E. J., Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl., 19, 147-161 (1990) · Zbl 0850.76048
[17] Ferreira, A. J.M.; Roque, C. M.C.; Neves, A. M.A.; Jorge, R. M.N.; Soares, C. M.M.; Reddy, J. N., Buckling analysis of isotropic and laminated plates by radial basis functions according to a higher-order shear deformation theory, Thin-Walled Struct., 49, 804-811 (2011)
[19] Liu, G. R.; Trung, N. T., Smoothed Finite Element Methods (2010), CRC Press
[20] Nguyen-Xuan, H.; Liu, G. R., An edge-based finite element method (ES-FEM) with adaptive scaled-bubble functions for plane strain limit analysis, Comput. Methods Appl. Mech. Engrg., 285, 877-905 (2015) · Zbl 1423.74169
[21] Boscolo, M.; Banerjee, J. R., Dynamic stiffness formulation for composite Mindlin plates for exact modal analysis of structures. Part I: Theory, Comput. Struct., 96-97, 61-73 (2012)
[22] Boscolo, M.; Banerjee, J. R., Dynamic stiffness formulation for composite Mindlin plates for exact modal analysis of structures. Part II: Results and applications, Comput. Struct., 96-97, 74-83 (2012)
[23] Bert, C. W.; Malik, M., The differential quadrature method for irregular domains and application to plate vibration, Int. J. Mech. Sci., 38, 589-606 (1996) · Zbl 0857.73077
[24] Bert, C. W.; Malik, M., Differential quadrature method in computational mechanics: A review, Appl. Mech. Rev., 49, 1-28 (1996)
[25] Quan, J. R.; Chang, C. T., New insights in solving distributed system equations by the quadrature method—I. Analysis, Comput. Chem. Eng., 13, 779-788 (1989)
[27] Shu, C.; Richards, B. E., Application of generalised differential quadrature to solve two-dimensional incompressible Navier-Stokes equations, Internat. J. Numer. Methods Fluids, 15, 791-798 (1992) · Zbl 0762.76085
[28] Shu, C.; Richards, B. E., Parallel simulation of incompressible viscous flows by generalized differential quadrature, ComSE, 3, 271-281 (1992)
[29] Wang, X.; Wang, Y., Free vibration analysis of multiple-stepped beams by the differential quadrature element method, Appl. Math. Comput., 219, 5802-5810 (2013) · Zbl 1273.74135
[30] Fantuzzi, N.; Tornabene, F.; Viola, E., Generalized differential quadrature finite element method for vibration analysis of arbitrarily shaped membranes, Int. J. Mech. Sci., 79, 216-251 (2014)
[31] Viola, E.; Tornabene, F.; Fantuzzi, N., Generalized differential quadrature finite element method for cracked composite structures of arbitrary shape, Compos. Struct., 106, 815-834 (2013)
[32] Xing, Y.; Liu, B.; Liu, G., A differential quadrature finite element method, Int. J. Appl. Mech., 2, 207-227 (2010)
[33] Taylor, M. A.; Wingate, B. A.; Vincent, R. E., An algorithm for computing fekete points in the triangle, SIAM J. Numer. Anal., 38, 1707-1720 (2000) · Zbl 0986.65017
[34] Briani, M.; Sommariva, A.; Vianello, M., Computing Fekete and Lebesgue points: Simplex, square, disk, J. Comput. Appl. Math., 236, 2477-2486 (2012) · Zbl 1242.41002
[35] Warburton, T., An explicit construction of interpolation nodes on the simplex, J. Eng. Math., 56, 247-262 (2006) · Zbl 1110.65014
[36] Blyth, M. G.; Pozrikidis, C., A Lobatto interpolation grid over the triangle, J. Appl. Math., 71, 153-169 (2006) · Zbl 1114.41001
[37] Blyth, M. G.; Luo, H.; Pozrikidis, C., A comparison of interpolation grids over the triangle or the tetrahedron, J. Eng. Math., 56, 263-272 (2006) · Zbl 1110.65012
[38] Luo, H.; Pozrikidis, C., A Lobatto interpolation grid in the tetrahedron, J. Appl. Math., 71, 298-313 (2006) · Zbl 1125.65012
[39] Pozrikidis, C., A spectral collocation method with triangular boundary elements, Eng. Anal. Bound. Elem., 30, 315-324 (2006) · Zbl 1195.65189
[40] Zhong, H.; Xu, J., A non-uniform grid for triangular differential quadrature, Sci. China Phys. Mech. Astron., 59, 124611 (2016)
[41] Webb, J. P., Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements, IEEE Trans. Antennas Propag., 47, 1244-1253 (1999) · Zbl 0955.78014
[42] Villeneuve, D.; Webb, J. P., Hierarchical universal matrices for triangular finite elements with varying material properties and curved boundaries, Internat. J. Numer. Methods Engrg., 44, 215-228 (1999) · Zbl 0939.74072
[43] Webb, J. P.; Abouchacra, R., Hierarchal triangular elements using orthogonal polynomials, Internat. J. Numer. Methods Engrg., 38, 245-257 (1995) · Zbl 0823.65102
[44] Zienkiewicz, O. C.; De S. R. Gago, J. P.; Kelly, D. W., The hierarchical concept in finite element analysis, Comput. Struct., 16, 53-65 (1983) · Zbl 0498.73072
[45] Petyt, M., Introduction to Finite Element Vibration Analysis (2010), Cambridge University Press: Cambridge University Press NewYork · Zbl 1214.74001
[46] Campion, S. D.; Jarvis, J. L., An investigation of the implementation of the p-version finite element method, Finite Elem. Anal. Des., 23, 1-21 (1996) · Zbl 0875.73323
[47] Shephard, M. S.; Dey, S.; Flaherty, J. E., A straightforward structure to construct shape functions for variable p-order meshes, Comput. Methods Appl. Mech. Engrg., 147, 209-233 (1997) · Zbl 0886.65004
[48] Liu, C.; Liu, B.; Zhao, L.; Xing, Y.; Ma, C.; Li, H., A differential quadrature hierarchical finite element method and its applications to vibration and bending of Mindlin plates with curvilinear domains, Internat. J. Numer. Methods Engrg., 109, 174-197 (2016)
[49] Liu, C.; Liu, B.; Xing, Y.; Reddy, J. N.; Neves, A. M.A.; Ferreira, A. J.M., In-plane vibration analysis of plates in curvilinear domains by a differential quadrature hierarchical finite element method, Meccanica, 52, 1017-1033 (2016) · Zbl 1383.74036
[50] Embar, A.; Dolbow, J.; Harari, I., Imposing Dirichlet boundary conditions with nitsche’s method and spline-based finite elements, Internat. J. Numer. Methods Engrg., 83, 877-898 (2010) · Zbl 1197.74178
[51] Liu, B.; Xing, Y.; Wang, Z.; Lu, X.; Sun, H., Non-uniform rational Lagrange functions and its applications to isogeometric analysis of in-plane and flexural vibration of thin plates, Comput. Methods Appl. Mech. Engrg., 321, 173-208 (2017) · Zbl 1439.74443
[52] Marussig, B.; Hughes, T. J.R., A Review of Trimming in Isogeometric Analysis: Challenges, Data Exchange and Simulation Aspects, 1-69 (2017), ARCO
[53] Schmidt, R.; Wüchner, R.; Bletzinger, K.-U., Isogeometric analysis of trimmed NURBS geometries, Comput. Methods Appl. Mech. Engrg., 241-244, 93-111 (2012) · Zbl 1353.74079
[54] Hesthaven, J. S., From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex, SIAM J. Numer. Anal., 35, 655-676 (1998) · Zbl 0933.41004
[55] Piegl, L.; Tiller, W., The NURBS Book (1997), Springer: Springer Berlin · Zbl 0868.68106
[57] Liu, B., NURL toolbox, (A Collection of Routines for the Creation and Operation of Non-Uniform Rational Lagrange (NURL) Geometries (2017))
[58] Houmat, A., In-plane vibration of plates with curvilinear plan-forms by a trigonometrically enriched curved triangular p-element, Thin-Walled Struct., 46, 103-111 (2008)
[59] Liu, C.; Liu, B.; Kang, T.; Xing, Y., Micro/macro-mechanical analysis of the interface of composite structures by a differential quadrature hierarchical finite element method, Compos. Struct., 154, 39-48 (2016)
[60] Park, C. I., Frequency equation for the in-plane vibration of a clamped circular plate, J. Sound Vib., 313, 325-333 (2008)
[61] Liu, B.; Xing, Y., Exact solutions for free in-plane vibrations of rectangular plates, Acta Mech. Solida Sin., 24, 556-567 (2011)
[62] Xing, Y. F.; Liu, B., Exact solutions for the free in-plane vibrations of rectangular plates, Int. J. Mech. Sci., 51, 246-255 (2009) · Zbl 1264.74108
[63] Liew, K. M.; Xiang, Y.; Kitipornchai, S.; Wang, C. M., Vibration of thick skew plates based on Mindlin shear deformation plate theory, J. Sound Vib., 168, 39-69 (1993) · Zbl 0925.73419
[64] Shufrin, I.; Eisenberger, M., Stability and vibration of shear deformable plates—-first order and higher order analyses, Int. J. Solids Struct., 42, 1225-1251 (2005) · Zbl 1086.74510
[65] Hashemi, S. H.; Arsanjani, M., Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates, Int. J. Solids Struct., 42, 819-853 (2005) · Zbl 1125.74338
[66] Liu, F. L.; Liew, K. M., Free vibration analysis of Mindlin sector plates: Numerical solutions by differential quadrature method, Comput. Methods Appl. Mech. Engrg., 177, 77-92 (1999) · Zbl 0964.74026
[67] Huang, C. S.; McGee, O. G.; Leissa, A. W., Exact analytical solutions for free vibrations of thick sectorial plates with simply supported radial edges, Int. J. Solids Struct., 31, 1609-1631 (1994) · Zbl 0946.74523
[68] McGee, O. G.; Huang, C. S.; Leissa, A. W., Comprehensive exact solutions for free vibrations of thick annular sectorial plates with simply supported radial edges, Int. J. Mech. Sci., 37, 537-566 (1995) · Zbl 0841.73037
[69] Hung, K., A Treatise on Three-Dimensional Vibration of a Class of Elastic Solids (1996), Nanyang Technological University
[70] Liew, K. M.; Teo, T. M., Three-dimensional vibration analysis of rectangular plates based on differential quadrature method, J. Sound Vib., 220, 577-599 (1999)
[71] Leissa, A. W., The free vibration of rectangular plates, J. Sound Vib., 31, 257-293 (1973) · Zbl 0268.73033
[72] Srinivas, S.; Rao, C. V.J.; Rao, A. K., An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates, J. Sound Vib., 12, 187-199 (1970) · Zbl 0212.57801
[73] Cheung, Y. K.; Zhou, D., Three-dimensional vibration analysis of cantilevered and completely free isosceles triangular plates, Int. J. Solids Struct., 39, 673-687 (2002) · Zbl 0991.74511
[74] Kitipornchai, S.; Liew, K. M.; Xiang, Y.; Wang, C. M., Free vibration of isosceles triangular mindlin plates, Int. J. Mech. Sci., 35, 89-102 (1993) · Zbl 0775.73144
[75] Zhou, D.; Au, F. T.K.; Cheung, Y. K.; Lo, S. H., Three-dimensional vibration analysis of circular and annular plates via the Chebyshev-Ritz method, Int. J. Solids Struct., 40, 3089-3105 (2003) · Zbl 1038.74568
[76] Liew, K. M.; Yang, B., Three-dimensional elasticity solutions for free vibrations of circular plates: A polynomials-Ritz analysis, Comput. Methods Appl. Mech. Engrg., 175, 189-201 (1999) · Zbl 0962.74079
[77] Lim, C. W.; Liew, K. M., A higher order theory for vibration of shear deformable cylindrical shallow shells, Int. J. Mech. Sci., 37, 277-295 (1995) · Zbl 0824.73032
[78] Liew, K. M.; Peng, L. X.; Ng, T. Y., Three-dimensional vibration analysis of spherical shell panels subjected to different boundary conditions, Int. J. Mech. Sci., 44, 2103-2117 (2002) · Zbl 1021.74016
[79] O’Malley, B.; Kópházi, J.; Eaton, M. D.; Badalassi, V.; Warner, P.; Copestake, A., Discontinuous Galerkin spatial discretisation of the neutron transport equation with pyramid finite elements and a discrete ordinate (sn) angular approximation, Ann. Nucl. Energy, 113, 526-535 (2018)
[80] Chan, J.; Warburton, T., Hp-finite element trace inequalities for the pyramid, Comput. Math. Appl., 69, 510-517 (2015) · Zbl 1443.65318
[81] Turner, M.; Peiró, J.; Moxey, D., Curvilinear mesh generation using a variational framework, Comput. Aided Des., 103, 73-91 (2018)
[82] Turner, M.; Moxey, D.; Peiró, J.; Gammon, M.; Pollard, C. R.; Bucklow, H., A framework for the generation of high-order curvilinear hybrid meshes for CFD simulations, Procedia Eng., 203, 206-218 (2017)
[83] Fortunato, M.; Persson, P.-O., High-order unstructured curved mesh generation using the Winslow equations, J. Comput. Phys., 307, 1-14 (2016) · Zbl 1352.65607
[84] Breitenberger, M.; Apostolatos, A.; Philipp, B.; Wüchner, R.; Bletzinger, K. U., Analysis in computer aided design: nonlinear isogeometric B-Rep analysis of shell structures, Comput. Methods Appl. Mech. Engrg., 284, 401-457 (2015) · Zbl 1425.65030
[85] Ribeiro, P.; Petyt, M., Nonlinear vibration of plates by the hierarchical finite element and continuation methods, Int. J. Mech. Sci., 41, 437-459 (1999) · Zbl 0958.74026
[86] Ribeiro, P.; Petyt, M., Non-linear vibration of composite laminated plates by the hierarchical finite element method, Compos. Struct., 46, 197-208 (1999)
[87] Andakhshideh, A.; Maleki, S.; Aghdam, M. M., Non-linear bending analysis of laminated sector plates using Generalized Differential Quadrature, Compos. Struct., 92, 2258-2264 (2010)
[88] Girgin, Z., Combining differential quadrature method with simulation technique to solve non-linear differential equations, Internat. J. Numer. Methods Engrg., 75, 722-734 (2008) · Zbl 1195.70005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.