×

Threshold autoregression analysis for finite-range time series of counts with an application on measles data. (English) Zbl 07192569

Summary: This article studies the threshold autoregression analysis for the self-exciting threshold binomial autoregressive processes. Parameters’ point estimation and interval estimation problems are considered via the empirical likelihood method. A new algorithm to estimate the threshold value of the threshold model is also given. Simulation study is conducted for the evaluation of the developed approach. An application on measles data is provided to show the applicability of the method.

MSC:

62-XX Statistics

Software:

SurvStat@RKI
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Shi H, Wang D.An approximation model of the collective risk model with INAR(1) claim process. Comm Statist Theory Methods. 2014;43(24):5305-5317. doi: 10.1080/03610926.2012.729636[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1308.62178
[2] Li C, Wang D, Zhu F.Effective control charts for monitoring the NGINAR(1) process. J Time Ser Anal. 2016;32(3):877-888. [Google Scholar]
[3] Al-Osh MA, Alzaid AA.First-order integer-valued autoregressive (INAR(1)) process. J Time Ser Anal. 1987;8(3):261-275. doi: 10.1111/j.1467-9892.1987.tb00438.x[Crossref], [Google Scholar] · Zbl 0617.62096
[4] McKenzie E.Some simple models for discrete variate time series. J Am Water Resour Assoc. 1985;21(4):645-650. doi: 10.1111/j.1752-1688.1985.tb05379.x[Crossref], [Google Scholar]
[5] Weiß CH.Monitoring correlated processes with binomial marginals. J Appl Stat. 2009;36(4):399-414. doi: 10.1080/02664760802468803[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1473.62398
[6] Weiß CH, Pollett PK.Chain binomial models and binomial autoregressive processes. Biometrics. 2012;68(3):815-824. doi: 10.1111/j.1541-0420.2011.01716.x[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1272.62099
[7] Weiß CH, Pollett PK.Binomial autoregressive processes with density-dependent thinning. J Time Ser Anal. 2014;35(2):115-132. doi: 10.1002/jtsa.12054[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1301.62094
[8] Tong H. On a Threshold Model. In: Chen CH, editor. Pattern recognition and signal processing. Amsterdam: Sijthoff and Noordhoff; 1978. p. 575-586. [Google Scholar]
[9] Tong H, Lim KS.Threshold autoregressive, limit cycles and cyclical data. J R Stat Soc Ser B. 1980;42(3):245-292. [Google Scholar] · Zbl 0473.62081
[10] Monteiro M, Scotto MG, Pereira I.Integer-valued self-exciting threshold autoregressive processes. Comm Statist Theory Methods. 2012;41(15):2717-2737. doi: 10.1080/03610926.2011.556292[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1270.62122
[11] Thyregod P, Carstensen J, Madsen H, et al. Integer valued autoregressive models for tipping bucket rainfall measurements. Environmetrics. 1999;10(4):295-411. doi: 10.1002/(SICI)1099-095X(199907/08)10:4<395::AID-ENV364>3.0.CO;2-M[Crossref], [Web of Science ®], [Google Scholar]
[12] Li H, Yang K, Wang D.Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes. Comput Stat. 2017;32(4):1597-1620. doi: 10.1007/s00180-017-0748-9[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1417.62251
[13] Wang C, Liu H, Yao J, et al. Self-excited threshold Poisson autoregression. J Am Stat Assoc. 2014;109(506):776-787. doi: 10.1080/01621459.2013.872994[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1367.62267
[14] Chen CWS, Lee S.Generalized Poisson autoregressive models for time series of counts. Comput Stat Data Anal. 2016;99:51-67. doi: 10.1016/j.csda.2016.01.009[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1468.62037
[15] Yang K, Wang D, Jia B, et al. An integer-valued threshold autoregressive process based on negative binomial thinning. Statist Papers. 2017. doi: 10.1007/s00362-016-0808-1. [Crossref], [Google Scholar]
[16] Li H, Yang K, Zhao S, et al. First-order random coefficients integer-valued threshold autoregressive processes. Adv Stat Anal. 2017. doi: 10.1007/s10182-017-0306-3. [Crossref], [PubMed], [Google Scholar] · Zbl 1421.62125
[17] Möller TA, Silva ME, Weiß CH, et al. Self-exciting threshold binomial autoregressive processes. Adv Stat Anal. 2016;100(4):369-400. doi: 10.1007/s10182-015-0264-6[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1443.62280
[18] Möller TA.Self-exciting threshold models for time series of counts with a finite range. Stoch Models. 2016;32(1):77-98. doi: 10.1080/15326349.2015.1085319[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1345.60080
[19] Möller TA, Weiß CH. Threshold models for integer-valued time series with infinite and finite range. In: Steland et al., editors. Stochastic models, statistics and their applications. New York (NY): Springer Proceedings in Mathematics and Statistics, Vol. 122. 2015. p. 327-334. [Google Scholar] · Zbl 1351.62170
[20] Owen AB. Empirical likelihood ratio confidence intervals for a single functional. Biometrika. 1988;75(2):237-249. doi: 10.1093/biomet/75.2.237[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0641.62032
[21] Owen A.Empirical likelihood for linear models. Ann Statist. 1991;19(4):1725-1747. doi: 10.1214/aos/1176348368[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0799.62048
[22] Qin J, Lawless J.Empirical likelihood and general estimating equations. Ann Statist. 1994;22(1):300-325. doi: 10.1214/aos/1176325370[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0799.62049
[23] Kitamura Y.Empirical likelihood methods with weakly dependent processes. Ann Statist. 1997;25(5):2084-2102. doi: 10.1214/aos/1069362388[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0881.62095
[24] Monti AC.Empirical likelihood confidence regions in time series models. Biometrika. 1997;84(2):395-405. doi: 10.1093/biomet/84.2.395[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0882.62082
[25] Chuang CS, Chan NH.Empirical likelihood for autoregressive models, with applications to unstable time series. Stat Sin. 2002;12(12):387-407. [Google Scholar] · Zbl 0998.62075
[26] Chan NH, Ling S.Empirical likelihood for GARCH models. Econ. Theory. 2006;22(3):403-428. doi: 10.1017/S0266466606060208[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1125.62097
[27] Zhang H, Wang D, Zhu F.The Empirical likelihood for first-order random coefficient integer-valued autoregressive processes. Comm Statist Theory Methods. 2011;40(3):492-509. doi: 10.1080/03610920903443997[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1208.62143
[28] Zhu F, Wang D.Empirical likelihood for linear and log-linear INGARCH models. J Korean Stat Soc. 2014;44(1):150-160. doi: 10.1016/j.jkss.2014.06.004[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1311.62158
[29] Ding X, Wang D.Empirical likelihood inference for INAR(1) model with explanatory variables. J Korean Stat Soc. 2016;45(4):623-632. doi: 10.1016/j.jkss.2016.05.004[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1349.62396
[30] Nordmana DJ, Lahiri SN.A review of empirical likelihood methods for time series. J Stat Plan Inference. 2014;155(155):1-18. doi: 10.1016/j.jspi.2013.10.001[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1307.62120
[31] Mykland PA.Dual likelihood. Ann Statist. 1995;23(2):396-421. doi: 10.1214/aos/1176324527[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0877.62004
[32] Robert-Koch-Institut. SurvStat@RKI. http://www3.rki.de/SurvStat. Accessed 2014-07-02. 2014. [Google Scholar]
[33] Billingsley P. Statistical inference for Markov processes. Chicago (IL): The University of Chicago Press; 1961. [Google Scholar] · Zbl 0106.34201
[34] Hall P, Heyde CC. Martinale limit theory and its application. New York: Academic Press; 1980. [Google Scholar] · Zbl 0462.60045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.