×

Computing hypergeometric functions rigorously. (English) Zbl 1486.65026


MSC:

65D20 Computation of special functions and constants, construction of tables
33F05 Numerical approximation and evaluation of special functions
65G30 Interval and finite arithmetic
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] M. Abramowitz and I. A. Stegun. 1964. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, NY. · Zbl 0171.38503
[2] D. H. Bailey. 2015. MPFUN2015: A thread-safe arbitrary precision computation package. Manuscript. https://www.davidhbailey.com/dhbpapers/mpfun2015.pdf.
[3] D. H. Bailey and J. M. Borwein. 2015. High-precision arithmetic in mathematical physics. Mathematics 3, 2 (2015), 337-367. · Zbl 1318.65025
[4] D. H. Bailey, J. M. Borwein, and R. E. Crandall. 2006. Integrals of the Ising class. J. Phys. A: Math. Gen. 39, 40 (2006), 12271-12302. · Zbl 1113.65023
[5] W. Becken and P. Schmelcher. 2000. The analytic continuation of the Gaussian hypergeometric function <sub>2</sub>F<sub>1</sub> (a, b; c; z) for arbitrary parameters. J. Comput. Appl. Math. 126, 1-2 (2000), 449-478. · Zbl 0976.33003
[6] D. J. Bernstein. 2008. Fast multiplication and its applications. Algorithmic Number Theory. Lattices, Number Fields, Curves and Cryptography, J.P. Buhler and P. Stevenhagen (Eds.), Vol. 44. http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521808545. · Zbl 1154.11002
[7] R. Bloemen. 2009. Even faster ζ (2n) calculation! Retrieved from https://web.archive.org/web/20141101133659/http://xn-2-umb.com/09/11/even-faster-zeta-calculation.
[8] A. I. Bogolubsky and S. L. Skorokhodov. 2006. Fast evaluation of the hypergeometric function <sub>p</sub>F<sub>p−1</sub> (a; b; z) at the singular point z = 1 by means of the Hurwitz zeta function ζ (&alpha s) . Program. Comput. Softw. 32, 3 (2006), 145-153. · Zbl 1102.33014
[9] A. R. Booker, A. Strömbergsson, and A. Venkatesh. 2006. Effective computation of Maass cusp forms. International Mathematics Research Notices. · Zbl 1154.11018
[10] J. M. Borwein, D. M. Bradley, and R. E. Crandall. 2000. Computational strategies for the Riemann zeta function. J. Comput. Appl. Math. 121, 1-2 (2000), 247-296. · Zbl 0972.11077
[11] J. M. Borwein and I. J. Zucker. 1992. Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind. IMA J. Numer. Anal. 12, 4 (1992), 519-526. · Zbl 0758.65008
[12] P. Borwein. 2000. An efficient algorithm for the Riemann zeta function. Can. Math. Soc. Conf. Proc. 27 (2000), 29-34. · Zbl 0984.11067
[13] P. B. Borwein. 1987. Reduced complexity evaluation of hypergeometric functions. J. Approx. Theory 50, 3 (Jul. 1987). · Zbl 0613.42007
[14] A. Bostan, P. Gaudry, and É. Schost. 2007. Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator. SIAM J. Comput. 36, 6 (2007), 1777-1806. · Zbl 1210.11126
[15] R. P. Brent. 1976. The complexity of multiple-precision arithmetic. The Complexity of Computational Problem Solving, R. P. Brent and R. S. Anderssen (Eds.). University of Queensland Press.
[16] R. P. Brent. 2016. On asymptotic approximations to the log-Gamma and Riemann-Siegel theta functions. arXiv preprint arXiv:1609.03682 (2016).
[17] R. P. Brent and D. Harvey. 2013. Fast computation of Bernoulli, tangent and secant numbers. In Computational and Analytical Mathematics. Springer, 127-142. · Zbl 1310.11120
[18] R. P. Brent and F. Johansson. 2015. A bound for the error term in the Brent-McMillan algorithm. Math. Comp. 84, 295 (Sep. 2015), 2351-2359. · Zbl 1320.33007
[19] R. P. Brent and P. Zimmermann. 2011. Modern Computer Arithmetic. Cambridge University Press, Cambridge, UK. · Zbl 1230.68014
[20] S. Chevillard and M. Mezzarobba. 2013. Multiple-precision evaluation of the Airy Ai function with reduced cancellation. In Proceedings of the 21st IEEE Symposium on Computer Arithmetic (ARITH21). 175-182.
[21] D. V. Chudnovsky and G. V. Chudnovsky. 1988. Approximations and complex multiplication according to Ramanujan. In Ramanujan Revisited. Academic Press, New York, NY, 375-472. · Zbl 0647.10002
[22] D. V. Chudnovsky and G. V. Chudnovsky. 1990. Computer algebra in the service of mathematical physics and number theory. Comput. Math. 125 (1990), 109. · Zbl 0712.11078
[23] M. Colman, A. Cuyt, and J. Van Deun. 2011. Validated computation of certain hypergeometric functions. ACM Trans. Math. Softw. 38, 2 (2011). · Zbl 1365.65046
[24] Z. Du. 2006. Guaranteed Precision for Transcendental and Algebraic Computation Made Easy. Ph.D. Dissertation. New York University, New York, NY.
[25] Z. Du, M. Eleftheriou, J. E. Moreira, and C. Yap. 2002. Hypergeometric functions in exact geometric computation. Electr. Not. Theor. Comput. Sci. 66, 1 (2002), 53-64. · Zbl 1261.68127
[26] A. Enge, P. Théveny, and P. Zimmermann. 2011. MPC: A library for multiprecision complex arithmetic with exact rounding. Retrieved from http://multiprecision.org/.
[27] R. Fateman. 2006. {{Maxima} numerical evaluation of 2F1} from RW Gosper. Retrieved from http://www.math.utexas.edu/pipermail/maxima/2006/000126.html.
[28] S. Fillebrown. 1992. Faster computation of Bernoulli numbers. J. Algor. 13, 3 (1992), 431-445. · Zbl 0755.11006
[29] P. Flajolet and I. Vardi. 1996. Zeta function expansions of classical constants. Retrieved from http://algo.inria.fr/flajolet/Publications/FlVa96.pdf.
[30] R. C. Forrey. 1997. Computing the hypergeometric function. J. Comput. Phys. 137, 1 (1997), 79-100. · Zbl 0886.65009
[31] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. 2007. MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33, 2 (Jun. 2007), 13:1-13:15. http://mpfr.org. · Zbl 1365.65302
[32] D. Gaspard. 2018. Connection formulas between Coulomb wave functions. arXiv preprint arXiv:1804.10976 (2018). · Zbl 1404.81093
[33] A. Gil, J. Segura, and N. M. Temme. 2007. Numerical Methods for Special Functions. SIAM, Philadelphia, PA. · Zbl 1144.65016
[34] B. Haible and T. Papanikolaou. 1998. Fast multiprecision evaluation of series of rational numbers. In Proceedings of the 3rd International Symposium on Algorithmic Number Theory (ANTS-III), J. P. Buhler (Ed.). Springer, Berlin, 338-350. · Zbl 1067.11517
[35] D. E. G. Hare. 1997. Computing the principal branch of log-Gamma. J. Algor. 25, 2 (1997), 221-236. · Zbl 0887.68055
[36] U. D. Jentschura and E. Lötstedt. 2012. Numerical calculation of Bessel, Hankel and Airy functions. Comput. Phys. Commun. 183, 3 (2012), 506-519. · Zbl 1264.65028
[37] F. Johansson. 2013. Arb: A C library for ball arithmetic. ACM Commun. Comput. Algebr. 47, 4 (2013), 166-169.
[38] F. Johansson. 2014a. Evaluating parametric holonomic sequences using rectangular splitting. In Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (ISSAC’14). ACM, New York, NY, 256-263. · Zbl 1325.65178
[39] F. Johansson. 2014b. Fast and Rigorous Computation of Special Functions to High Precision. Ph.D. Dissertation. RISC, Johannes Kepler University, Linz.
[40] F. Johansson. 2015a. Efficient implementation of elementary functions in the medium-precision range. In Proceedings of the 22nd IEEE Symposium on Computer Arithmetic (ARITH22). 83-89.
[41] F. Johansson. 2015b. mpmath: A Python Library for Arbitrary-precision Floating-point Arithmetic. Retrieved from http://mpmath.org.
[42] F. Johansson. 2015c. Rigorous high-precision computation of the Hurwitz zeta function and its derivatives. Numer. Algor. 69, 2 (Jun. 2015), 253-270. · Zbl 1320.65039
[43] F. Johansson. 2017. Arb: Efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Trans. Comput. 66, 8 (2017), 1281-1292. · Zbl 1388.65037
[44] F. Johansson and M. Mezzarobba. 2018. Fast and rigorous arbitrary-precision computation of Gauss-Legendre quadrature nodes and weights. SIAM J. Sci. Comput. 40, 6 (2018), C726-C747. · Zbl 06990607
[45] E. Jones, T. Oliphant, P. Peterson, et al. 2001. SciPy: Open Source Scientific Tools for Python. Retrieved from http://www.scipy.org/.
[46] E. A. Karatsuba. 1998. Fast evaluation of the Hurwitz zeta function and Dirichlet L-series. Prob. Inf. Transm. 34, 4 (1998). · Zbl 0928.11056
[47] M. Kodama. 2011. Algorithm 912: A module for calculating cylindrical functions of complex order and complex argument. ACM Trans. Math. Software 37, 4 (Feb. 2011), 1-25. · Zbl 1365.65065
[48] S. Köhler and M. Ziegler. 2008. On the stability of fast polynomial arithmetic. In Proceedings of the 8th Conference on Real Numbers and Computers. Santiago de Compostela, Spain.
[49] K. Kuhlman. 2015. Unconfined: Command-line Parallel Unconfined Aquifer Test Simulator. Retrieved from https://github.com/klkuhlm/unconfined.
[50] C. Lanczos. 1964. A precision approximation of the Gamma function. SIAM J. Numer. Anal. 1, 1 (1964), 86-96. · Zbl 0136.05201
[51] Maplesoft. 2016. Maple. Retrieved from http://www.maplesoft.com/documentation_center/.
[52] Maxima authors. 2015. Maxima, a Computer Algebra System. Retrieved from http://maxima.sourceforge.net/.
[53] M. Mezzarobba. 2010. NumGfun: A package for numerical and analytic computation with D-finite functions. In Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC’10). 139-146. · Zbl 1321.65202
[54] M. Mezzarobba. 2011. Autour de l’évaluation numérique des fonctions D-finies. Thèse de doctorat. Ecole polytechnique.
[55] M. Mezzarobba. 2016. Rigorous Multiple-Precision Evaluation of D-Finite Functions in SageMath. Retrieved from https://arxiv.org/abs/1607.01967.
[56] M. Mezzarobba and B. Salvy. 2010. Effective bounds for P-recursive sequences. J. Symbol. Comput. 45, 10 (2010), 1075-1096. · Zbl 1201.65219
[57] N. Michel and M. V. Stoitsov. 2008. Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl-Teller-Ginocchio potential wave functions. Comput. Phys. Commun. 178, 7 (2008), 535-551. · Zbl 1196.33020
[58] K. E. Muller. 2001. Computing the confluent hypergeometric function, M(a, b, x) . Numer. Math. 90, 1 (2001), 179-196. · Zbl 0995.65029
[59] M. Nardin, W. F. Perger, and A. Bhalla. 1992. Numerical evaluation of the confluent hypergeometric function for complex arguments of large magnitudes. J. Comput. Appl. Math 39, 2 (1992), 193-200. · Zbl 0777.65007
[60] NIST. 2016. Digital Library of Mathematical Functions. Release 1.0.11 of 2016-06-08. Retrieved from http://dlmf.nist.gov/. Online companion to Olver et al. (2010).
[61] F. W. J. Olver. 1997. Asymptotics and Special Functions. A K Peters, Wellesley, MA. · Zbl 0982.41018
[62] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark. 2010. NIST Handbook of Mathematical Functions. Cambridge University Press, New York, NY. · Zbl 1198.00002
[63] J. Pearson. 2009. Computation of Hypergeometric Functions. Master’s thesis. University of Oxford.
[64] J. W. Pearson, S. Olver, and M. A. Porter. 2014. Numerical methods for the computation of the confluent and Gauss hypergeometric functions. arXiv:1407.7786, http://arxiv.org/abs/1407.7786 (2014). · Zbl 1360.33009
[65] J. Reignier. 1999. Singularities of ordinary linear differential equations and integrability. In The Painlevé Property. Springer, Berlin, 1-33. · Zbl 1041.34084
[66] N. Revol and F. Rouillier. 2005. Motivations for an arbitrary precision interval arithmetic library and the MPFI library. Reliable Comput. 11, 4 (2005), 275-290. · Zbl 1078.65543
[67] Sage developers. 2016. SageMath, the Sage Mathematics Software System (Version 7.2.0). Retrieved from http://www.sagemath.org.
[68] T. Schmelzer and L. N. Trefethen. 2007. Computing the Gamma function using contour integrals and rational approximations. SIAM J. Numer. Anal. 45, 2 (2007), 558-571. · Zbl 1153.65026
[69] S. L. Skorokhodov. 2005. A method for computing the generalized hypergeometric function <sub>p</sub>F<sub>p−1</sub> (a<sub>1</sub>, … , a<sub>p</sub> ; b<sub>1</sub>, … , b<sub>p-1</sub>; 1) in terms of the Riemann zeta function. Comput. Math. Math. Phys. 45, 4 (2005), 574-586.
[70] D. M. Smith. 1989. Efficient multiple-precision evaluation of elementary functions. Math. Comp. 52, 185 (1989), 131-134. · Zbl 0657.65032
[71] D. M. Smith. 2001. Algorithm: Fortran 90 software for floating-point multiple precision arithmetic, gamma and related functions. Trans. Math. Softw. 27 (2001), 377-387. · Zbl 1070.65514
[72] M. Sofroniou and G. Spaletta. 2005. Precise numerical computation. J. Logic Algebr. Program. 64, 1 (2005), 113-134. · Zbl 1075.68104
[73] J. L. Spouge. 1994. Computation of the gamma, digamma, and trigamma functions. SIAM J. Numer. Anal. 31, 3 (1994), 931-944. · Zbl 0803.40001
[74] T. P. Stefański. 2013. Electromagnetic problems requiring high-precision computations. IEEE Antenn. Propagat. Mag. 55, 2 (Apr. 2013), 344-353.
[75] N. M. Temme. 1983. The numerical computation of the confluent hypergeometric function U (a, b, z). Numer. Math. 41, 1 (1983), 63-82. · Zbl 0489.33001
[76] The MPFR team. 2016. The MPFR library: Algorithms and proofs. Retrieved from http://www.mpfr.org/algo.html.
[77] The PARI group. 2016. PARI/GP. Bordeaux. Retrieved from http://pari.math.u-bordeaux.fr.
[78] W. Tucker. 2011. Validated Numerics: A Short Introduction to Rigorous Computations. Princeton University Press, Princeton, NJ. · Zbl 1231.65077
[79] J. van der Hoeven. 1999. Fast evaluation of holonomic functions. Theor. Comput. Sci. 210, 1 (1999), 199-215. · Zbl 0912.68081
[80] J. van der Hoeven. 2001. Fast evaluation of holonomic functions near and in regular singularities. J. Symbol. Comput. 31, 6 (2001), 717-743. · Zbl 0982.65024
[81] J. van der Hoeven. 2007. Efficient accelero-summation of holonomic functions. J. Symbol. Computat. 42, 4 (2007), 389-428. · Zbl 1125.34072
[82] J. van der Hoeven. 2009. Ball Arithmetic. Technical Report. HAL. Retrieved from http://hal.archives-ouvertes.fr/hal-00432152/fr/.
[83] A. Vogt. 2007. Computing the Hypergeometric Function 2F1 Using a Recipe of Gosper. Retrieved from http://www.axelvogt.de/axalom/hyp2F1/hypergeometric_2F1_using_a_recipe_of_Gosper.mws.pdf.
[84] E. W. Weisstein. 2016. Borel-Regularized Sum. Retrieved from http://mathworld.wolfram.com/Borel-RegularizedSum.html.
[85] J. L. Willis. 2012. Acceleration of generalized hypergeometric functions through precise remainder asymptotics. Numer. Algor. 59, 3 (2012), 447-485. · Zbl 1236.65019
[86] Wolfram Research. 2016. Mathematica. Retrieved from http://wolfram.com.
[87] Wolfram Research. 2016. The Wolfram Functions Site. Retrieved from http://functions.wolfram.com/.
[88] N. Yamamoto and N. Matsuda. {n.d.}. Validated computation of Bessel functions. In Proceedings of the 2005 International Symposium on Nonlinear Theory and its Applications (NOLTA’05).
[89] M. Ziegler. 2005. Fast (Multi-)Evaluation of Linearly Recurrent Sequences: Improvements and Applications. (2005). Retreived from http://arxiv.org/abs/cs/0511033.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.