×

Interior penalty discontinuous Galerkin technique for solving generalized Sobolev equation. (English) Zbl 1437.65174

Summary: This paper proposes a discontinuous Galerkin method to solve the generalized Sobolev equation. In this numerical procedure, the temporal variable has been discretized by the Crank-Nicolson idea to get a time-discrete scheme with the second-order accuracy. Then, in the second stage the spatial variable has been discretized by the discontinuous Galerkin finite element method. A prior error estimate has been proposed for the semi-discrete scheme based on the spatial discretization. By applying the Crank-Nicolson idea a full-discrete scheme is driven. Furthermore, an error estimate has been proved to get the convergence order of the developed scheme. Finally, some numerical examples have been presented to show the efficiency and theoretical results of the new numerical procedure.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)

Software:

FESTUNG
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abbaszadeh, M.; Dehghan, M., Analysis of mixed finite element method (MFEM) for solving the generalized fractional reaction-diffusion equation on nonrectangular domains, Comput. Math. Appl., 78, 5, 1531-1547 (2019) · Zbl 1442.65244
[2] Abbaszadeh, M.; Dehghan, M., Investigation of the Oldroyd model as a generalized incompressible Navier-Stokes equation via the interpolating stabilized element free Galerkin technique, Appl. Numer. Math., 150, 274-294 (2020) · Zbl 1444.76083
[3] Ai, X.; Li, B. Q., Numerical simulation of thermal wave propagation during laser processing of thin films, J. Electron. Mater., 34, 583-591 (2005)
[4] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 1749-1779 (2002) · Zbl 1008.65080
[5] Badia, S.; Hierro, A., On discrete maximum principles for discontinuous Galerkin methods, Comput. Methods Appl. Mech. Eng., 286, 107-122 (2015) · Zbl 1423.76205
[6] Cappanera, L.; Riviere, B., Discontinuous Galerkin method for solving the black-oil problem in porous media, Numer. Methods Partial Differ. Equ., 35, 2, 761-789 (2019) · Zbl 1416.76097
[7] Chaabane, N.; Riviere, B., A sequential discontinuous Galerkin method for the coupling of flow and geomechanics, J. Sci. Comput., 74, 1, 375-395 (2018) · Zbl 1404.65162
[8] Cheng, Y.; Shu, C. W., A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations, J. Comput. Phys., 223, 398-415 (2007) · Zbl 1124.65090
[9] Chou, C. S.; Shu, C. W.; Xing, Y., Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media, J. Comput. Phys., 272, 88-107 (2014) · Zbl 1349.65446
[10] Cockburn, B., Devising discontinuous Galerkin methods for nonlinear hyperbolic conservation laws, J. Comput. Appl. Math., 128, 187-204 (2001) · Zbl 0974.65092
[11] Cockburn, B.; Shu, C. W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II, General framework, Math. Comput., 52, 411-435 (1989) · Zbl 0662.65083
[12] Cockburn, B.; Shu, C. W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 2440-2463 (1998) · Zbl 0927.65118
[13] Cockburn, B.; Shu, C. W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141, 199-224 (1998) · Zbl 0920.65059
[14] Cockburn, B.; Hou, S.; Shu, C. W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws, IV, The multidimensional case, Math. Comput., 54, 545-581 (1990) · Zbl 0695.65066
[15] Cui, X.; Li, B. Q., A discontinuous finite-element formulation for multi-dimensional radiative transfer in absorbing, emitting, and scattering media, Numer. Heat Transf., Part B, Fundam., 46, 5, 399-428 (2004)
[16] Dehghan, M.; Abbaszadeh, M., Variational multiscale element free Galerkin (VMEFG) and local discontinuous Galerkin (LDG) methods for solving two-dimensional Brusselator reaction-diffusion system with and without cross-diffusion, Comput. Methods Appl. Mech. Eng., 300, 770-797 (2016) · Zbl 1425.65108
[17] Dehghan, M.; Abbaszadeh, M., A finite element method for the numerical solution of Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives, Eng. Comput., 33, 587-605 (2017)
[18] Dehghan, M.; Abbaszadeh, M.; Mohebbi, A., Analysis of two methods based on Galerkin weak form for fractional diffusion-wave: meshless interpolating element free Galerkin (IEFG) and finite element methods, Eng. Anal. Bound. Elem., 64, 205-221 (2016) · Zbl 1403.65068
[19] Dehghan, M.; Manafian Heris, J.; Saadatmandi, A., Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics, Int. J. Numer. Methods Heat Fluid Flow, 21, 6, 736-753 (2011)
[20] Dehghan, M.; Manafian, J.; Saadatmandi, A., Application of semi-analytical methods for solving the Rosenau-Hyman equation arising in the pattern formation in liquid drops, Int. J. Numer. Methods Heat Fluid Flow, 22, 6, 777-790 (2012) · Zbl 1357.65212
[21] Demkowicz, L.; Gopalakrishnan, J.; Niemi, A. H., A class of discontinuous Petrov-Galerkin methods. Part III: Adaptivity, Appl. Numer. Math., 62, 396-427 (2012) · Zbl 1316.76047
[22] Du, Y.; Liu, Y.; Li, H.; Fang, Z.; He, S., Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation, J. Comput. Phys., 344, 108-126 (2017) · Zbl 1380.65258
[23] Ellis, T.; Demkowicz, L.; Chan, J., Locally conservative discontinuous Petrov-Galerkin finite elements for fluid problems, Comput. Math. Appl., 68, 1530-1549 (2014) · Zbl 1364.76086
[24] Epshteyn, Y.; Riviere, B., Estimation of penalty parameters for symmetric interior penalty Galerkin methods, J. Comput. Appl. Math., 206, 2, 843-872 (2007) · Zbl 1141.65078
[25] Eshaghi, J.; Kazem, S.; Adibi, H., The local discontinuous Galerkin method for 2D nonlinear time-fractional advection-diffusion equations, Eng. Comput., 35, 1317-1332 (2019)
[26] Ewing, R. E., Numerical solution of Sobolev partial differential equations, SIAM J. Numer. Anal., 12, 3, 345-363 (1974) · Zbl 0355.65071
[27] Frank, F.; Ray, N.; Knabner, P., Numerical investigation of homogenized Stokes-Nernst-Planck-Poisson systems, Comput. Vis. Sci., 14, 385-400 (2011) · Zbl 1358.76070
[28] Frank, F.; Reuter, B.; Aizinger, V.; Knabner, P., FESTUNG: a MATLAB/GNU Octave toolbox for the discontinuous Galerkin method, Part I: Diffusion operator, Comput. Math. Appl., 70, 11-46 (2015) · Zbl 1443.65202
[29] Gao, F.; Cui, J.; Zhao, G., Weak Galerkin finite element methods for Sobolev equation, J. Comput. Appl. Math., 317, 188-202 (2017) · Zbl 1357.65175
[30] Giani, S., hp-adaptive composite discontinuous Galerkin methods for elliptic eigenvalue problems on complicated domains, Appl. Math. Comput., 267, 604-617 (2015) · Zbl 1410.65436
[31] Hu, C.; Shu, C. W., A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 21, 2, 666-690 (1998) · Zbl 0946.65090
[32] Karakus, A.; Warburton, T.; Aksel, M. H.; Sert, C., An adaptive fully discontinuous Galerkin level set method for incompressible multiphase flows, Int. J. Numer. Methods Heat Fluid Flow, 18 (2018 Jun)
[33] Khodadadian, A.; Parvizi, M.; Abbaszadeh, M.; Dehghan, M.; Heitzinger, C., A multilevel Monte Carlo finite element method for the stochastic Cahn-Hilliard-Cook equation, Comput. Mech., 64, 4, 937-949 (2019) · Zbl 1465.76076
[34] Li, B. Q., Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer (2006), Springer-Verlag: Springer-Verlag London Limited · Zbl 1110.76001
[35] Li, M.; Huang, C., An efficient difference scheme for the coupled nonlinear fractional Ginzburg-Landau equations with the fractional Laplacian, Numer. Methods Partial Differ. Equ., 35, 1, 394-421 (2019) · Zbl 1419.65024
[36] Li, M.; Zhao, Y. L., A fast energy conserving finite element method for the nonlinear fractional Schrodinger equation with wave operator, Appl. Math. Comput., 338, 758-773 (2018) · Zbl 1427.65253
[37] Li, M.; Huang, C.; Huang, C.; Jiang, F., Galerkin finite element method for higher dimensional multi-term fractional diffusion equation on non-uniform meshes, Appl. Anal., 96, 1269-1284 (2016) · Zbl 1371.65108
[38] Li, M.; Gu, X. M.; Huang, C.; Fei, M.; Zhang, G., A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrodinger equations, J. Comput. Phys., 358, 256-282 (2018) · Zbl 1382.65320
[39] Li, M.; Shi, D.; Wang, J.; Ming, W., Unconditional superconvergence analysis of the conservative linearized Galerkin FEMs for nonlinear Klein-Gordon-Schrodinger equation, Appl. Numer. Math., 142, 47-63 (2019) · Zbl 1477.65160
[40] Li, M.; Zhao, J.; Huang, C.; Chen, S., Nonconforming virtual element method for the time fractional reaction-subdiffusion equation with non-smooth data, J. Sci. Comput., 81, 3, 1823-1859 (2019) · Zbl 1440.65143
[41] Li, N.; Lin, P.; Gao, F., An expanded mixed finite element method for two-dimensional Sobolev equations, J. Comput. Appl. Math., 348, 342-355 (2019) · Zbl 1412.65221
[42] Liang, X.; Khaliq, A. Q.M.; Xing, Y., Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrödinger equations, Commun. Comput. Phys., 17, 510-541 (2015) · Zbl 1388.65086
[43] Lin, Y., Galerkin methods for nonlinear Sobolev equations, Aequ. Math., 40, 54-66 (1990) · Zbl 0718.65067
[44] Liu, Y.; Zhang, M.; Li, H.; Li, J., High-order local discontinuous Galerkin method combined with WSGD approximation for a fractional subdiffusion equation, Comput. Math. Appl., 73, 6, 1298-1314 (2017) · Zbl 1412.65150
[45] Luo, Z.; Teng, F., A reduced-order extrapolated finite difference iterative scheme based on POD method for 2D Sobolev equation, Appl. Math. Comput., 329, 374-383 (2018) · Zbl 1427.65174
[46] Luo, Z.; Teng, F.; Chen, J., A POD-based reduced-order Crank-Nicolson finite volume element extrapolating algorithm for 2D Sobolev equations, Math. Comput. Simul., 146, 118-133 (2018) · Zbl 1484.65193
[47] Marti, J.; Ortega, E.; Idelsohn, S., An improved enrichment method for weak discontinuities for thermal problems, Int. J. Numer. Methods Heat Fluid Flow, 27, 8, 1748-1764 (2017)
[48] Ploymaklam, N.; Kumbhar, P.; Pani, A. K., A priori error analysis of the local discontinuous Galerkin method for the viscous Burgers-Poisson system (2016), Technical Report
[49] Riviere, B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation (2008), Rice University: Rice University Houston, Texas · Zbl 1153.65112
[50] Riviere, B.; Wheeler, M. F.; Girault, V., Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I, Comput. Geosci., 3, 3-4, 337-360 (1999) · Zbl 0951.65108
[51] Riviere, B.; Wheeler, M. F.; Girault, V., A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal., 39, 3, 902-931 (2001) · Zbl 1010.65045
[52] Riviere, B.; Tan, J.; Thompson, T., Error analysis of primal discontinuous Galerkin methods for a mixed formulation of the Biot equations, Comput. Math. Appl., 73, 4, 666-683 (2017) · Zbl 1368.65195
[53] Shu, C. W., Discontinuous Galerkin method for time dependent problems: survey and recent developments, (Feng, X.; Karakashian, O.; Xing, Y., Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations2012 John H. Barrett Memorial Lectures. Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations2012 John H. Barrett Memorial Lectures, The IMA Volumes in Mathematics and Its Applications, vol. 157 (2014), Springer: Springer Switzerland), 25-62 · Zbl 1282.65122
[54] Wang, H.; Shu, C. W.; Zhang, Q., Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems, SIAM J. Numer. Anal., 53, 1, 206-227 (2015) · Zbl 1327.65179
[55] Wang, W. K.; Wang, Y. T., The well-posedness of solution to semilinear pseudo-parabolic equation, Acta Math. Appl. Sin. Engl. Ser., 35, 2, 386-400 (2019) · Zbl 1428.35185
[56] Wazwaz, A. M., Explicit and implicit solutions for the one-dimensional cubic and quintic complex Ginzburg-Landau equations, Appl. Math. Lett., 19, 1007-1012 (2006) · Zbl 1118.35358
[57] Wei, L.; Zhang, X.; He, Y., Analysis of a local discontinuous Galerkin method for time-fractional advection-diffusion equations, Int. J. Numer. Methods Heat Fluid Flow, 23, 4, 634-648 (2013) · Zbl 1357.65181
[58] Xia, Y.; Xu, Y.; Shu, C. W., Efficient time discretization for local discontinuous Galerkin methods, Discrete Contin. Dyn. Syst., Ser. B, 8, 677-693 (2007) · Zbl 1141.65076
[59] Zhang, J.; Zhang, Y.; Guo, H.; Fu, H., A mass-conservative characteristic splitting mixed finite element method for convection-dominated Sobolev equation, Math. Comput. Simul., 160, 180-191 (2019) · Zbl 07316665
[60] Zhang, X.; Shu, C. W., On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. Comput. Phys., 229, 23, 8918-8934 (2010) · Zbl 1282.76128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.