×

Curvilinear virtual elements for 2D solid mechanics applications. (English) Zbl 1441.74229

Summary: In the present work, we generalize the curvilinear Virtual Element technology, introduced for a simple linear scalar problem in a previous work, to generic 2D solid mechanic problems in small deformations. Such generalization also includes the development of a novel Virtual Element space for displacements that contains rigid body motions. Our approach can accept a generic black-box (elastic or inelastic) constitutive algorithm and, in addition, can make use of curved edges thus leading to an exact approximation of the geometry. Rigorous theoretical interpolation properties for the new space on curvilinear elements are derived. We develop an extensive numerical test campaign, both on elastic and inelastic problems, to assess the behavior of the scheme. The results are very promising and underline the advantages of the curved VEM approach over the standard one in the presence of curved geometries.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74B05 Classical linear elasticity
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Beirão da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, L. D.; Russo, A., Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23, 1, 199-214 (2013) · Zbl 1416.65433
[2] Beirão da Veiga, L.; Brezzi, F.; Marini, L. D.; Russo, A., The Hitchhiker’s guide to the virtual element method, Math. Models Methods Appl. Sci., 24, 08, 1541-1573 (2014) · Zbl 1291.65336
[3] Beirão da Veiga, L.; Dassi, F.; Russo, A., High-order virtual element method on polyhedral meshes, Comput. Math. Appl., 74, 5, 1110-1122 (2017) · Zbl 1448.65215
[4] Beirão da Veiga, L.; Brezzi, F.; Marini, L. D., Virtual elements for linear elasticity problems, SIAM J. Numer. Anal., 51, 2, 794-812 (2013) · Zbl 1268.74010
[5] Gain, A. L.; Talischi, C.; Paulino, G. H., On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes, Comput. Methods Appl. Mech. Engrg., 282, 132-160 (2014) · Zbl 1423.74095
[6] Beirão da Veiga, L.; Lovadina, C.; Mora, D., A virtual element method for elastic and inelastic problems on polytope meshes, Comput. Methods Appl. Mech. Engrg., 295, 327-346 (2015) · Zbl 1423.74120
[7] Wriggers, P.; Rust, W. T.; Reddy, B. D., A virtual element method for contact, Comput. Mech., 58, 6, 1039-1050 (2016) · Zbl 1398.74420
[8] Brezzi, F.; Marini, L. D., Virtual element methods for plate bending problems, Comput. Methods Appl. Mech. Engrg., 253, 455-462 (2013) · Zbl 1297.74049
[9] Gain, A. L.; Paulino, G. H.; Duarte, L. S.; Menezes, I. F.M., Topology optimization using polytopes, Comput. Methods Appl. Mech. Engrg., 293, 411-430 (2015) · Zbl 1423.74745
[10] Paulino, G. H.; Gain, A. L., Bridging art and engineering using Escher-based virtual elements, Struct. Multidiscip. Optim., 51, 4, 867-883 (2015)
[11] Artioli, E.; Beirão da Veiga, L.; Lovadina, C.; Sacco, E., Arbitrary order 2D virtual elements for polygonal meshes: Part I, elastic problem, Comput. Mech., 60, 3, 355-377 (2017) · Zbl 1386.74132
[12] Artioli, E.; Beirão da Veiga, L.; Lovadina, C.; Sacco, E., Arbitrary order 2D virtual elements for polygonal meshes: Part II, inelastic problem, Comput. Mech., 60, 4, 643-657 (2017) · Zbl 1386.74133
[13] Chi, H.; Beirão da Veiga, L.; Paulino, G. H., Some basic formulations of the virtual element method (VEM) for finite deformations, Comput. Methods Appl. Mech. Engrg., 318, 148-192 (2017) · Zbl 1439.74397
[14] Antonietti, P. F.; Manzini, G.; Verani, M., The fully nonconforming virtual element method for biharmonic problems, Math. Models Methods Appl. Sci., 28, 02, 387-407 (2017) · Zbl 1381.65090
[15] Wriggers, P.; Hudobivnik, B., A low order virtual element formulation for finite elasto-plastic deformations, Comput. Methods Appl. Mech. Engrg., 327, 459-477 (2017) · Zbl 1439.74070
[16] Wriggers, P.; Rust, W. T.; Reddy, B. D.; Hudobivnik, B., Efficient virtual element formulations for compressible and incompressible finite deformations, Comput. Mech., 60, 2, 253-268 (2017) · Zbl 1386.74146
[17] Artioli, E., Asymptotic homogenization of fibre-reinforced composites: a virtual element method approach, Meccanica, 53, 6, 1187-1201 (2018) · Zbl 1390.74174
[18] Artioli, E.; Marfia, S.; Sacco, E., High-order virtual element method for the homogenization of long fiber nonlinear composites, Comput. Methods Appl. Mech. Engrg., 341, 571-585 (2018) · Zbl 1440.74338
[19] Artioli, E.; de Miranda, S.; Lovadina, C.; Patruno, L., A family of virtual element methods for plane elasticity problems based on the Hellinger-Reissner principle, Comput. Methods Appl. Mech. Engrg., 340, 978-999 (2018) · Zbl 1440.74056
[20] Benedetto, M. F.; Caggiano, A.; Etse, G., Virtual elements and zero thickness interface-based approach for fracture analysis of heterogeneous materials, Comput. Methods Appl. Mech. Engrg., 338, 41-67 (2018) · Zbl 1440.74374
[21] Taylor, R. L.; Artioli, E., VEM for inelastic solids, Comput. Methods Appl. Sci., 46, 381-394 (2018) · Zbl 1493.74111
[22] Pingaro, M.; Reccia, E.; Trovalusci, P., Homogenization of random porous materials with low-order virtual elements, ASCE-ASME J. Risk Uncertain. Eng. Syst. B Mech. Eng., 5, 3, Article 030905 pp. (2019)
[23] F. Dassi, C. Lovadina, M. Visinoni, A three-dimensional Hellinger-Reissner Virtual Element Method for linear elasticity problems, Preprint. arXiv:1906.06119. · Zbl 1442.65358
[24] Chi, H.; Beirão da Veiga, L.; Paulino, G. H., A simple and effective gradient recovery scheme and a posteriori error estimator for the Virtual Element Method (VEM), Comput. Methods Appl. Mech. Engrg., 347, 21-58 (2019) · Zbl 1440.65194
[25] Sukumar, N.; Tabarraei, A., Conforming polygonal finite elements, Internat. J. Numer. Methods Engrg., 61, 12, 2045-2066 (2004) · Zbl 1073.65563
[26] Biabanaki, S. O.R.; Khoei, A. R.; Wriggers, P., Polygonal finite element methods for contact-impact problems on non-conformal meshes, Comput. Methods Appl. Mech. Engrg., 269, 198-221 (2014) · Zbl 1296.74105
[27] Chi, H.; Talischi, C.; Lopez-Pamies, O.; Paulino, G. H., Polygonal finite elements for finite elasticity, Internat. J. Numer. Methods Engrg., 101, 4, 305-328 (2015) · Zbl 1352.74044
[28] Di Pietro, D. A.; Ern, A., A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Methods Appl. Mech. Engrg., 283, 1-21 (2015) · Zbl 1423.74876
[29] Ciarlet, P. G., The Finite Element Method for Elliptic Problems, Vol. 40 (2002), Siam
[30] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[31] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[32] Beirão da Veiga, L.; Russo, A.; Vacca, G., The virtual element method with curved edges, ESAIM Math. Model. Numer. Anal., 53, 2, 375-404 (2019) · Zbl 1426.65163
[33] A. Anand, J.S. Ovall, S. Reynolds, S. Weißer, Trefftz finite elements on curvilinear polygons, Preprint. arXiv:1906.09015. · Zbl 1440.65173
[34] S. Bertoluzza, M. Pennacchio, D. Prada, High order VEM on curved domains, Preprint. arXiv:1811.04755. · Zbl 1422.65370
[35] Botti, L.; Di Pietro, D. A., Assessment of Hybrid High-Order methods on curved meshes and comparison with discontinuous Galerkin methods, J. Comput. Phys., 370, 58-84 (2018) · Zbl 1398.65328
[36] Simo, J. C.; Hughes, T. J.R., Computational Inelasticity (1998), Springer · Zbl 0934.74003
[37] Ahmad, B.; Alsaedi, A.; Brezzi, F.; Marini, L. D.; Russo, A., Equivalent projectors for virtual element methods, Comput. Math. Appl., 66, 3, 376-391 (2013) · Zbl 1347.65172
[38] Beirão da Veiga, L.; Brezzi, F.; Marini, L. D.; Russo, A., Virtual element method for general second-order elliptic problems on polygonal meshes, Math. Models Methods Appl. Sci., 26, 04, 729-750 (2016) · Zbl 1332.65162
[39] Sommariva, A.; Vianello, M., Product Gauss cubature over polygons based on Green’s integration formula, BIT, 47, 2, 441-453 (2007) · Zbl 1122.65027
[40] Sommariva, A.; Vianello, M., Gauss-green cubature and moment computation over arbitrary geometries, J. Comput. Appl. Math., 231, 886-896 (2009) · Zbl 1170.65017
[41] Sommariva, A.; Vianello, M., Compression of multivariate discrete measures and applications, Numer. Funct. Anal. Optim., 36, 9, 1198-1223 (2015) · Zbl 1327.41006
[42] Artioli, E.; Sommariva, A.; Vianello, M., Algebraic cubature on polygonal elements with a circular edge (2019), accepted for publication on Comp. and Math. with Appl · Zbl 1454.65159
[43] Talischi, C.; Paulino, G. H.; Pereira, A.; Menezes, I. F.M., Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab, Struct. Multidiscip. Optim., 45, 3, 309-328 (2012) · Zbl 1274.74401
[44] Gatica, G. N.; Márquez, A.; Rudolph, W., A priori and a posteriori error analyses of augmented twofold saddle point formulations for nonlinear elasticity problems, Comput. Methods Appl. Mech. Engrg., 264, 23-48 (2013) · Zbl 1286.74019
[45] Zienkiewicz, O. C.; Taylor, R. L.; Fox, D. D., The Finite Element Method for Solid and Structural Mechanics (2014), Butterworth Heinemann · Zbl 1307.74003
[46] Zienkiewicz, O. C.; Taylor, R. L.; Zhu, J. Z., The Finite Element Method: its Basis and Fundamentals (2013), Butterworth Heinemann · Zbl 1307.74005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.