×

Chlorophyll \(a\) fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity. (English) Zbl 1464.92020

Summary: Chlorophyll a fluorescence rise (FLR) measured in vivo in dark-adapted plant tissue immediately after the onset of high light continuous illumination shows complex O-K-J-I-P transient. The steps typically appear at about \(400 \mu\) s (K), 2 ms (J), 30 ms (I), and 200–500 ms (P) and a transient decrease of fluorescence to local minima (dips D) can be observed after the K, J, and I steps. As the FLR reflects a function of photosystem II (PSII) and to more understand the FLR, a PSII reactions model was formulated comprising equilibrium of excited states among all light harvesting and reaction centre pigments and P680, reversible radical pair formation and the donor and acceptor side functions. Such a formulated model is the most detailed and complex model of PSII reactions used so far for simulations of the FLR. By varying of selected model parameters (rate constants and initial conditions) several conclusions can be made as for the origin of and changes in shape of the theoretical FLR and compare them with in-literature-reported results. For homogeneous population of PSII and using standard in-literature-reported values of the model parameters, the simulated FLR is characterized by reaching the minimal fluorescence F0 at about 3 ns after the illumination is switched on lasting to about \(1\mu\) s, followed by fluorescence rise to a plateau located at about 2 ms and subsequent fluorescence rise to a global maximum that is reached at about 60 ms. Varying of the values of rate constants of fast processes that can compete for utilization of the excited states with fluorescence emission does not change qualitatively the shape of the FLR. However, primary photochemistry of PSII (the charge separation, recombination and stabilization), non-radiative loss of excited states in light harvesting antennae and excited states quenching by oxidized plastoquisnone (PQ) molecules from the PQ pool seem to be the main factors controlling the maximum quantum yield of PSII photochemistry as expressed by the FV/FM ratio. The appearance of the plateau at about 2 ms in the FLR is affected by several factors: the height of the plateau in the FLR increases when the fluorescence quenching by oxidized P680+ is not considered in the simulations or when the electron transfer from QA\(^-\) to QB\(^{(-)}\) is slowed down whereas the height of the plateau decreases and its position is shifted to shorter times when OEC is initially in higher \(S\) state. The plateau at about 2 ms is changed into the local fluorescence maximum followed by a dip when the fluorescence quenching by oxidized PQ molecules or the charge recombination between P680\(^+\) and QA\(^-\) is not considered in the simulations or when all OEC is initially in the \(S_0\) state or when the \(S\)-state transitions of OEC are slowed down. Slowing down of the \(S\)-state transitions of OEC as well as of the electron transfer from QA\(^-\) to QB\(^{(-)}\) also causes a decrease of maximal fluorescence level. In the case of full inhibition of the \(S\)-state transitions of OEC as well as in the case of full inhibition of the electron donation to P680\(^+\) by YZ, the local fluorescence maximum becomes the global fluorescence maximum. Assuming homogeneous PSII population, theoretical FLR curve that only far resembles experimentally measured O-J-I-P transient at room temperature can be simulated when slowly reducing PQ pool is considered. Assuming heterogeneous PSII population (i.e. the \(\alpha/\beta\) and the \(Q_B\)-reducing/\(Q_B\)-non-reducing heterogeneity and heterogeneity in size of the PQ pool and rate of its reduction) enables to simulate the FLR with two steps between minimal and maximal fluorescence whose relative heights are in agreement with the experiments but not their time positions. A cause of this discrepancy is discussed as well as different approaches to the definition of fluorescence signal during the FLR.

MSC:

92C05 Biophysics
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)

Software:

GEPASI; ODEPACK
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] BAAKE, E.; SCHLÖDER, J. P., Modelling the fast fluorescence rise of photosynthesis, Bull. Math. Biol., 54, 999-1021 (1992) · Zbl 0757.92006
[2] BARTHÉLEMY, X.; POPOVIC, R.; FRANCK, F., Studies on the O-J-I-P transient of chlorophyll fluorescence in relation to photosystem II assembly and heterogeneity in plastids of greening barley, J. Photochem. Photobiol. B: Biol., 39, 213-218 (1997)
[3] BJÖRKMAN, O.; DEMMIG, B., Photon yield of O2 evolution of chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins, Planta, 170, 489-504 (1987)
[4] BLACK, M. T.; BREARLEY, T. H.; HORTON, P., Heterogeneity in chloroplast photosystem II, Photosynth. Res., 8, 193-207 (1986)
[5] BOUGES-BOCQUET, B., Electron transfer between the two photosystems in spinach chloroplasts, Biochim. Biophys. Acta, 314, 250-256 (1973)
[6] BRETON, J., The emission of chlorophyll in vivo. Antenna fluorescence or ultrafast luminescence from reaction center pigments, FEBS, 159, 1-5 (1983)
[7] BRETTEL, K.; SCHLODDER, E.; WITT, H. T., Nanosecond reduction kinetics of photooxidized chloro- phyll-\(a_{II} (P-680)\) in single fleshes as a probe for the electron pathway, \(H^+\)-release and charge accumulation in the \(O_2\)-evolving complex, Biochim. Biophys. Acta, 766, 403-415 (1984)
[8] BRIANTAIS, J.-M.; VERNOTTE, C.; PICAUD, M.; KRAUSE, G. H., A quantitative study of the slow decline of chlorophyll \(a\) fluorescence in isolated chloroplasts, Biochim. Biophys. Acta, 548, 128-138 (1979)
[9] BRIANTAIS, J.-M.; VERNOTTE, C.; PICAUD, M.; KRAUSE, G. H., Chlorophyll fluorescence as a probe for the determination of the photo-induced proton gradient in isolated chloroplasts, Biochim. Biophys. Acta, 591, 198-202 (1980)
[10] BRUCE, D.; SAMSON, G.; CARPENTER, C., The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by \(P680^+\) in photosystem II enriched membranes at low pH, Biochem., 36, 749-755 (1997)
[11] BUTLER, W. L., On the primary nature of fluorescence yield changes associated with photosynthesis, Proc. Natl. Acad. Sci. U.S.A., 69, 3420-3422 (1972)
[12] BYRDIN, M.; RIMKE, I.; SCHLODDER, E.; STEHLIK, D.; ROELOFS, T. A., Decay kinetics and quantum yields of fluorescence in photosystem I from Synechococcus elongatus with P700 in the reduced and oxidized state: are the kinetics of excited state decay trap-limited or transfer-limited?, Biophys. J., 79, 992-1007 (2000)
[13] CAO, J.; GOVINDJEE, Chlorophyll a fluorescence transient as an indicator of active and inactive Photosystem II in thylakoid membranes, Biochim. Biophys. Acta., 1015, 180-188 (1990)
[14] CHRISTOFFERS, D., On the theory of in vivo chlorophyll fluorescence. Computer simulation of primary photosynthetic reactions, Photobiochem. Photobiophys., 11, 101-113 (1986)
[15] CHYLLA, R. A.; WHITMARSH, J., Inactive photosystem II complexes in leaves, Plant Physiol., 90, 765-772 (1989)
[16] CONJEAUD, H.; MATHIS, P.; PAILLOTIN, G., Primary and secondary electron donors in photosystem II of chloroplasts. Rates of electron transfer and location in the membrane, Biochim. Biophys. Acta, 546, 280-291 (1979)
[17] COURNAC, L.; JOSSE, E.-M.; JOËT, T.; RUMEAU, D.; REDDING, K.; KUNZ, M.; PELTIER, G., Flexibility in photosynthetic electron transport: a newly identified chloroplast oxidase involved in chlororespiration, Philos. Trans. R. Soc. Lond. B, 355, 1447-1454 (2000)
[18] CROFTS, A. R.; WRAIGHT, C. A., The electrochemical domain of photosynthesis, Biochim. Biophys. Acta, 726, 149-185 (1983)
[19] CROFTS, A. R.; BAROLI, I.; KRAMER, D.; TAOKA, S., Kinetics of Electron Transfer between \(Q_A\) and \(Q_B\) in Wild Type and Herbicide-Resistant Mutants ofChlamydomonas reinhardtii, Z. Naturforsch. C, 48, 259-266 (1993)
[20] DAU, H., Molecular mechanism and quantitative models of variable photosystem II fluorescence, Photochem. Photobiol., 60, 1-23 (1994)
[21] DEBUS, R. J.; BARRY, B. A.; SITHOLE, I.; BABCOCK, G. T.; MCINTOSH, L., Direct mutagenesis indicates that the donor to \(P_{680}^+\) in photosystem II Is tztosine-161 of the D1 Polypeptide, Biochemistry, 27, 9071-9074 (1988)
[22] DELOSME, R., Étude de l’induction de fluorescence des algues vertes et des chloroplastes au début d’une illumination intense, Biochim. Biophys. Acta, 143, 108-128 (1967)
[23] DELRIEU, M.-J.; ROSENGARD, F., Fundamental differences between period-4 oscillations of the oxygen and fluorescence yield induced by flash excitation in inside-out thylakoids, Biochim. Biophys. Acta, 892, 163-171 (1987)
[24] DELRIEU, M.-J.; ROSENGARD, F., Characterization of two types of oxygen-evolving Photosysem II reaction center by the flash-induced oxygen and fluorescence yield, Biochim. Biophys. Acta, 936, 39-49 (1988)
[25] DELRIEU, M. J.; ROSENGARD, F., Changes in the \(S_0\) and \(S_1\) properties during dark adaptation in oxygen-evolving Photosystem-II-enriched thylakoid membranes, Biochim. Biophys. Acta, 1057, 78-88 (1991)
[26] DEPREZ, J.; DOBEK, A.; GEACINTOV, N. E.; PAILLOTIN, G.; BRETON, J., Probing fluorescence induction in chloroplast on a nanosecond time scale utilizing pico-second laser pulse pairs, Biochim. Biophys. Acta, 725, 444-454 (1983)
[27] DUYSENS, L. N.M.; SWEERS, H. E., Mechanism of the two photochemical reactions in algae as studied by means of fluorescence, (Japanese Society of Plant Physiologists, Studies on Microalgae and Photosynthetic Bacteria (1963), University of Tokyo Press: University of Tokyo Press Tokyo), 353-372
[28] EATON-RYE, J. J.; GOVINDJEE, Electron transfer through the quinone acceptor complex of photosystem II after one or two actinic flashes in bicarbonate-depleted spinach thylakoid membranes, Biochim. Biophys. Acta, 935, 248-257 (1988)
[29] FORBUSH, B.; KOK, B., Reaction between primary and secondary electron acceptors of photosystem II of photosynthesis, Biochim. Biophys. Acta, 162, 243-253 (1968)
[30] GHIRARDI, M. L.; MELIS, A., Chlorophyll b deficiency in soybean mutants. I. Efects on photosystem stoichiometry and chlorophyll antenna size, Biochim. Biophys. Acta, 932, 130-137 (1988)
[31] GIBASIEWICZ, K.; DOBEK, A.; BRETON, J.; LEIBL, W., Modulation of primary radical pair kinetics and energetics in photosystem II by the redox state of the quinone electron acceptor \(Q_A\), Biophys. J., 80, 1617-1630 (2001)
[32] GOLBECK, J. H.; KOK, B., Redox titration of electron acceptor Q and the plastoquinone pool in photosystem II, Biochim. Biophys. Acta, 547, 347-360 (1979)
[33] GOLTSEV, V.; YORDANOV, I., Mathematical model of prompt and delayed chlorophyll fluorescence induction kinetics, Photosynthetica, 33, 571-586 (1997)
[34] GOVINDJEE, Photosystem II heterogeneity: the acceptor side, Photosynth. Res., 25, 151-160 (1990)
[35] GOVINDJEE, Sixty-three years since Kautsky: chloro- phyll \(a\) fluorescence, Aust. J. Plant Physiol., 22, 131-160 (1995)
[36] GOVINDJEE; SPILOTRO, P., An Arabidopsis thaliana mutant, altered in the \(γ\) -subunit of ATP synthase, has a different pattern of intensity-dependent changes in non-photochemical quenching and kinetics of the P-to-S fluorescence decay, Funct. Plant Biol., 29, 425-434 (2002)
[37] GRAAN, T.; ORT, D. R., Quantitation of the rapid electron donors to P700, the functional plastoquinone pool, and the ratio of the photosystems in spinach chloroplasts, J. Biol. Chem., 259, 14003-14010 (1984)
[38] GRAAN, T.; ORT, D. R., Detection of oxygen-evolving photosystem II centers inactive in plastoquinone reduction, Biochim. Biophys. Acta, 852, 320-330 (1986)
[39] GREENE, B. A.; STAEHELIN, L. A.; MELIS, A., Compensatory alterations in the photochemical apparatus of a photoregulatory, chlorophyll-b-deficient mutant of maize, Plant Physiol., 87, 365-370 (1988)
[40] GUISSÉ, B.; SRIVASTAVA, A.; STRASSER, R. J., Effects of high temperature and water stress on the polyphasic chlorophyll fluorescence transient of potato leaves, (Mathis, P., Photosynthesis: from Light to Biosphere, IV (1995), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 913-916
[41] GUISSÉ, B.; SRIVASTAVA, A.; STRASSER, R. J., The polyphasic rice of the chlorophyll \(a\) fluorescence (O-K-J-I-P) in heat-stressed leaves, Archs. Sci. Genéve, 48, 147-160 (1995)
[42] HAEHNEL, W., Photosynthetic electron transport in higher plants, Ann. Rev. Plant Physiol. Plant Mol. Biol., 35, 659-693 (1984)
[43] HAUMANN, M.; JUNGE, W., Extent and rate of proton release by photosynthetic water oxidation in thylakoids: electrostatic relaxation versus chemical production, Biochem., 33, 864-872 (1994)
[44] HAVEMAN, J.; MATHIS, P., Flash-induced absorption changes of the primary donor of photosystem II at 820 nm in chloroplasts inhibited by low pH or tris-treatment, Biochim. Biophys. Acta, 440, 346-355 (1976)
[45] HINDMARSH, A. C., ODEPACK, a systematised collection of ODE solvers, (Stepleman, R. S., Scientific Computing (1983), North-Holland: North-Holland Amsterdam), 55-64
[46] HSU, B.-D., The active photosystem II centers can make a significant contribution to the initial fluorescence rise from \(F_0\) to \(F_i\), Plant Sci., 81, 169-174 (1992)
[47] HSU, B.-D., A theoretical study on the fluorescence induction curve of spinach thylakoids in the absence of DCMU, Biochim. Biophys. Acta, 1140, 30-36 (1992)
[48] HSU, B.-D., Evidence for the contribution of the S-state transitions of oxygen evolution to the initial phase of fluorescence induction, Photosynth. Res., 36, 81-88 (1993)
[49] HSU, B.-D.; LEE, J.-Y., A study on the fluorescence induction curve from DCMU-poisoned chloroplast, Biochim. Biophys. Acta, 1056, 285-292 (1991)
[50] HSU, B.-D.; LEE, J.-Y., Fluorescence quenching by plastoquinone in an oxygen evolving photosystem-II-enriched preparation, J. Photochem. Photobiol. B: Biol., 30, 57-61 (1995)
[51] HSU, B.-D.; LEE, Y.-S.; Jang, Y.-R., A method for analysis of fluorescence induction curve from DCMU-poisoned chloroplasts, Biochim. Biophys. Acta, 975, 44-49 (1989)
[52] INOUE, Y., Photosynthetic thermoluminescence as a simple probe of photosystem II electron transport, (Amesz, J.; Hoff, A. J., Biophysical Techniques in Photosynthesis (1996), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 93-107
[53] JOLIOT, P.; LAVERGNE, J.; BÉAL, D., Plastoquinone compartmentation in chloroplasts. I. Evidence for domains with different rates of photo-reduction, Biochim. Biophys. Acta, 1101, 1-12 (1992)
[54] KARUKSTIS, K. K., Chlorophyll fluorescence analyses of photosystem II reaction center heterogeneity, J. Photochem. Photobiol. B: Biol., 15, 63-74 (1992)
[55] KAUTSKY, H.; FRANK, U. F., Chlorophyllfluoreszenz und Kohlensäureassimilation. XIII. die Chlorophyllfluoreszeng von Ulva lactuca und ihre Abhangigkeit von Narcotica, Sauerstoff und Kehlenoxyd, Biochem. Z., 315, 176-206 (1943)
[56] KAUTSKY, H.; HIRSCH, A., Neue Versuche zur Kohlensureassimilation, Naturwissenschaften, 19, 964 (1931)
[57] KIRCHHOFF, H.; HORSTMANN, S.; WEIS, E., Control of the photosynthetic electron transport by PQ diffusion microdomains in thylakoids of higher plants, Biochim. Biophys. Acta, 1459, 148-168 (2000)
[58] KITAJAMA, M.; BUTLER, W. L., Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone, Biochim. Biophys. Acta, 376, 105-115 (1975)
[59] KOBĽÍŽEK, M.; KAFTAN, D.; NEDBAL, L., On the relationship between the non-photochemical quenching of the chlorophyll fluorescence and the Photosystem II light harvesting efficiency. A repetitive flash fluorescence induction study, Photosynth. Res., 68, 141-152 (2001)
[60] KOK, B.; FORBUSH, B.; MCGLOIN, M., Cooperation of charges in photosynthetic \(O_2\) evolution — I. A linear four step mechanism, Photochem. Photobiol., 11, 457-475 (1970)
[61] KRAMER, D. M.; CROFTS, A. R., The concerted reduction of the high- and low-potential chains of the bf complex by plastoquinol, Biochim. Biophys. Acta, 1183, 72-84 (1993)
[62] KRAMER, D. M.; DIMARCO, G.; LORETO, F., Contribution of plastoquinone quenching to saturation pulse-induced rise of chlorophyll fluorescence in leaves, (Mathis, P., Photosynthesis: from Light to Biosphere, I (1995), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 147-150
[63] KRAUSE, G. H., Changes in chlorophyl fluorescence in relation to light dependent cation transfer across thylakoid membranes, Biochim. Biophys. Acta, 333, 301-313 (1974)
[64] KRAUSE, G. H.; WEIS, E., Chlorophyll fluorescence and photosynthesis: the basis, Annu. Rev. Plant Physiol. Plant Mol. Biol., 42, 313-349 (1991)
[65] KRAUSE, G. H.; VERNOTTE, C.; BRIANTAIS, J.-M., Photoinduced quenching of chlorophyll fluorescence in intact chloroplasts and algae. Resolution into two components, Biochim. Biophys. Acta, 679, 116-124 (1982)
[66] KURRECK, J.; SCHÖDEL, R.; RENGER, G., Investigation of the plastoquinone pool size and fluorescence quenching in thylakoid membranes and photosystem II (PS II) membrane fragments, Photosynth. Res., 63, 171-182 (2000)
[67] LAIBLE, P. D.; ZIPFEL, W.; OWENS, T. G., Excited state dynamics in chlorophyll-based antennae: the role of transfer equilibrium, Biophys. J., 66, 844-860 (1994)
[68] LAVERGNE, J.; BRAINTAIS, J.-M., Photosystem II heterogeneity, (Ort, D. R.; Yocum, C. F., Oxygenic Photosynthesis: The Light Reactions (1996), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 265-287
[69] LAVERGNE, J.; LECI, E., Properties of inactive photosystem II centers, Photosynth. Res., 35, 323-343 (1993)
[70] LAVERGNE, J.; TRISSL, H.-W., Theory of fluorescence induction of photosystem II: Derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photosynthetic units, Biophys. J., 68, 2474-2492 (1995)
[71] LAZÁR, D., Chlorophyll a fluorescence induction, Biochim. Biophys. Acta, 1412, 1-28 (1999)
[72] LAZÁR, D.; ILÍK, P., High-temperature induced chlorophyll fluorescence changes in barley leaves. Comparison of the critical temperatures determined from fluorescence induction and from fluorescence temperature curve, Plant Sci., 124, 159-164 (1997)
[73] LAZÁR, D.; NAUŠ, J., Statistical properties of chlorophyll fluorescence parameters, Photosynthetica, 35, 121-127 (1998)
[74] LAZÁR, D.; POSPÍŠIL, P., Mathematical simulation of chlorophyll a fluorescence rise measured with 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea-treated barley leaves at room and high temperatures, Eur. Biophys. J., 28, 468-477 (1999)
[75] LAZÁR, D.; BROKEŠ, M.; NAUŠ, J.; DVOŘÁK, L., Mathematical modelling of 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea action in plant leaves, J. theor. Biol., 191, 79-86 (1998)
[76] LAZÁR, D.; ILÍK, P.; NAUŠ, J., An appearance of K-peak in fluorescence induction depends on the acclimation of barley leaves to higher temperatures, J. Lumin., 72-74, 595-596 (1997)
[77] LAZÁR, D.; NAUŠ, J.; MATOUŠKOVÁ, M.; FLAŠAROVÁ, M., Mathematical modeling of changes in chlorophyll fluorescence induction caused by herbicides, Pestic. Biochem. Physiol., 57, 200-210 (1997)
[78] LAZÁR, D.; POSPÍŠIL, P.; NAUŠ, J., Decrease of fluorescence intensity after the K step in chlorophyll a fluorescence induction is suppressed by electron acceptors and donors to photosystem 2, Photosynthetica, 37, 255-265 (1999)
[79] LAZÁR, D.; TOMEK, P.; ILÍK, P.; NAUŠ, L., Determination of the antenna heterogeneity of photosystem II by direct simultaneous fitting of several fluorescence rise curves measured with DCMU at different light intensities, Photosynth. Res., 68, 247-257 (2001)
[80] LEIBL, W.; BRETON, J.; DEPREZ, J.; TRISSL, H.-W., Photoelectric study on the kinetics of trapping and charge stabilization in oriented PS II membranes, Photosynth. Res., 22, 257-275 (1989)
[81] MAUZERALL, D., Light-induced fluorescence changes in Chlorella, and the primary photoreactions the production of oxygen, Proc. Natl. Acad. Sci., 9, 1358-1362 (1972)
[82] MCCAULEY, S.; MELIS, A., Quantitation of plastoquinone photoreduction in spinach chloroplasts, Photosynth. Res., 8, 3-16 (1986)
[83] MCCAULEY, S.; MELIS, A., Quantitation of photosystem II activity in spinach chloroplasts. Effect of artificial quinone acceptors, Photochem. Photobiol., 46, 543-550 (1987)
[84] MELIS, A., Functional properties of Photosystem IIβ in spinach chloroplasts, Biochim. Biophys. Acta, 808, 334-342 (1985)
[85] MELIS, A., Dynamics of photosynthetic membrane composition and function, Biochim. Biophys. Acta, 1058, 87-106 (1991)
[86] MELIS, A., Excitation energy transfer: Functional and dynamic Aspects of hc (ab) proteins, (Ort, D. R.; Yocum, C. F., Oxygenic Photosynthesis: The Light Reactions (1996), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 523-538
[87] MELIS, A.; HOMANN, P. H., Kinetic analysis of the fluorescence induction in 3-(3,4-dichlorophenyl)-1,1-dimethylurea poisoned chloroplasts, Photochem. Photobiol., 21, 431-437 (1975)
[88] MELIS, A.; HOMANN, P. H., Heterogeneity of the photochemical centers in system II of chloroplasts, Photochem. Photobiol., 23, 343-350 (1976)
[89] MENDES, P., GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems, Comput. Appl. Biosci., 9, 563-571 (1993)
[90] MENDES, P., Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3, Trends Biochem. Sci., 22, 361-363 (1997)
[91] MESSINGER, J.; RENGER, G., Generation, oxidation by the oxidized form of the tyrosine of polypeptide D2, and possible electronic configuration of the redox states \(S_0, S_{−1}\) and \(S_{−2}\) of the water oxidase in isolated spinach thylakoids, Biochemistry, 32, 9379-9386 (1993)
[92] METZ, J. G.; NIXON, P. J.; RÖGNER, M.; BRUDVIG, G. W.; DINER, B. A., Directed alteration of the D1 polypeptide of photosystem II: evidence that tyrosine-161 is the redox component, Z, connecting the oxygen-evolving complex to the primary electron donor, P680, Biochemistry, 28, 6960-6969 (1989)
[93] MEYER, B.; SCHLODDER, E.; DEKKER, J. P.; WITT, H. T., \(O^2\) evolution and Chl \(a_{II}^+ (P-680^+)\) nanosecond reduction kinetics in single flashes as a function of pH, Biochim. Biophys. Acta, 974, 36-43 (1989)
[94] MUNDAY, J. C.M.; GOVINDJEE, Light-induced changes in the fluorescence yield of chlorophyll a in vivo. III. The dip and the peak in the fluorescence transient of Chlorella pyrenoidosa, Biophys. J., 9, 1-21 (1969)
[95] NEDBAL, L.; TRTÍLEK, M.; KAFTAN, D., Flash fluorescence induction: a novel method to study regulation of Photosystem II, J. Photochem. Photobiol. B: Biol., 48, 154-157 (1999)
[96] NEUBAUER, C.; SCHREIBER, U., The polyphasic rice of chlorophyll fluorescence upon onset of strong continuous illumination: I. Saturation characteristics and partial control by the photosystem II acceptor side, Z. Naturforsch. C, 42, 1246-1254 (1987)
[97] OETTMEIER, W.; SOLL, H. J., Competition between plastoquinone and 3-(3,4-dichlorphenyl)-1,1-dimethylurea at the acceptor side of photosystem II, Biochim. Biophys. Acta, 724, 287-297 (1983)
[98] OWENS, T. G., Processing of excitation energy by antenna pigments, (Baker, N. R., Photosynthesis and the Environment (1996), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 1-23
[99] PAPAGEORGIOU, G.; GOVINDJEE, pH control of the chlorophyll \(a\) fluorescence in algae, Biochim. Biophys. Acta, 234, 428-432 (1971)
[100] PAPAGEORGIOU, G.; GOVINDJEE, Light-induced changes in the fluorescence yield of chlorophyll \(a\) in vivo. II, Chlorella pyrenoidosa. Biophys. J., 8, 1316-1328 (1968)
[101] PETROULEAS, V.; DINER, B. A., Identification of \(Q^{400}\), a high-potential electron acceptor of photosystem II, the iron of the quinone-iron acceptor complex, Biochim. Biophys. Acta, 849, 264-275 (1986)
[102] PETZOLD, R. L., Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential Equations, SIAM J. Sci. Stat. Comput, 4, 36-148 (1983) · Zbl 0518.65051
[103] PFÜDEL, E., Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence, Photosynth. Res., 56, 185-195 (1998)
[104] PLIETH, C.; SATTELMACHER, B.; HANSEN, U.-P., Light-induced cytosolic calcium transients in green plant cells. II. The effect on a \(K^+\) channel as studied by a kinetic analysis in Chara corallina, Planta, 207, 52-59 (1998)
[105] POSPÍŠIL, P., Mechanisms of non-photochemical chlorophyll fluorescence quenching in higher plants, Photosynthetica, 34, 343-355 (1997)
[106] POSPÍŠIL, P.; DAU, H., Chlorophyll fluorescence transients of Photosystem II membrane particles as a tool for studying photosynthetic oxygen evolution, Photosynth. Res., 65, 41-52 (2000)
[107] POSPÍŠIL, P.; DAU, H., Valinomycin sensitivity proves that light-induced thylakoid volatges result in millisecond phase of chlorophyll fluorescence transients, Biochim. Biophys. Acta, 1554, 94-100 (2002)
[108] POSPÍŠIL, P.; NAUŠ, J., Theoretical simulation of temperature induced increase of quantum yield of minimum chlorophyll fluorescence \(Φ_{F(0)}\), J. theor. Biol., 193, 125-130 (1998)
[109] POSPÍŠIL, P.; TYYSTJÄRVI, E., Molecular mechanism of high-temperature-induced inhibition of acceptor side of Photosystem II, Photosynth. Res., 62, 55-66 (1999)
[110] RABINOVICH E.; GOVINDJEE, Photosynthesis (1969), Interscience Publishers Inc., John Wiley: Interscience Publishers Inc., John Wiley New York, p. 197-215
[111] RAZEGHIFARD, M. R.; KLUGHAMMER, C.; PACE, R. J., Electron paramagnetic resonance kinetic studies of the S states in spinach thylakoids, Biochem., 36, 86-92 (1997)
[112] RENGER, G.; SCHULZE, A., Quantitative analysis of fluorescence induction curves in isolated spinach chloroplasts, Photobiochem. Photobiophys., 9, 79-87 (1985)
[113] RENGER, G.; WOLFF, C., The existence of a high photochemical turnover rate at the reaction centers of system II in Tris-washed chloroplasts, Biochim. Biophys. Acta, 423, 610-614 (1976)
[114] RHEE, K.-H.; MORRIS, E. P.; BARBER, J.; KŰHLBRANDT, W., Three-dimensional structure photosystem II reaction centre at 8 A resolution, Nature, 396, 283-286 (1998)
[115] ROELOFS, T. A.; LEE, C.-H.; HOLZWARTH, A. R., Global target analysis of picosecond chlorophyll fluorescence kinetics from pea chloroplasts. A new approach to the characterization of the primary processes in photosystem II \(α\) - and \(β\) -units, Biophys. J., 61, 1147-1163 (1992)
[116] RUTHERFORD, A. W.; CROFTS, A. R.; INOUE, Y., Thermoluminescence as a probe of photosystem II photochemistry. The origin of the flash-induced glow peaks, Biochim. Biophys. Acta, 682, 457-465 (1982)
[117] SAMSON, G.; BRUCE, D., Origins of the low yield of chlorophyll \(a\) fluorescence induced by single turnover flash in spinach thylakoids, Biochim. Biophys. Acta, 1276, 147-153 (1996)
[118] SAMSON, G.; PRÁŠIL, O.; YAAKOUBD, B., Photochemical and thermal phases of chlorophyll \(a\) fluorescence, Photosynthetica, 37, 163-182 (1999)
[119] SCHATZ, G. H.; BROCK, H.; HOLZWARTH, A. R., Kinetic and energetic model for the primary processes in photosystem II, Biophys. J., 54, 397-405 (1988)
[120] SCHREIBER, U.; KRIEGER, A., Two fundamentally different types of variable chlorophyll fluorescence in vivo, FEBS Lett., 397, 131-135 (1996)
[121] SCHREIBER, U.; NEUBAUER, C., The polyphasic rice of chlorophyll fluorescence upon onset of strong continuous illumination: II. Partial control by the photosystem II donor side and possible ways of interpretation, Z. Naturforsch. C, 42, 1255-1264 (1987)
[122] SCHREIBER, U.; BAUER, R.; FRANK, U. F., Chlorophyll fluorescence induction in green plants at oxygen deficiency, (Forti, G.; Avron, M.; Melandri, A., Proceedings of the 2nd International Congress on the Photosynthesis (1971), Junk: Junk Hague), 169-179
[123] SCHREIBER, U.; HORMANN, H.; NEUBAUER, C.; KLUGHAMMER, C., Assessment of photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis, Aust. J. Plant Physiol., 22, 20-22 (1995)
[124] SCHREIBER, U.; NEUBAUER, C.; KLUGHAMMER, C., Devices and methods for room-temperature fluorescence analysis, Philos. Trans. R. Soc. Lond. B, 323, 241-251 (1989)
[125] SHIGEMATSU, Y.; SATOH, F.; YAMADA, Y., A binding model for phenylurea herbicides based on analysis of a Thr 264 mutation in D-1 protein of tobacco, Pestic. Biochem. Physiol., 35, 33-41 (1989)
[126] SHINKAREV, V. P.; GOVINDJEE, Insight into the relationship of chlorophyll a fluorescence yield to the concentration of its natural quenchers in oxygenic photosynthesis, Proc. Natl. Acad. Sci. U.S.A., 90, 7466-7469 (1993)
[127] SINCLAIR, J.; SPENCE, S. M., The analysis of fluorescence induction transients from dichlorophenyl-dimethylurea-poisoned chloroplasts, Biochim. Biophys. Acta, 935, 184-194 (1988)
[128] SINCLAIR, J.; SPENCE, S. M., Heterogeneous photosystem 2 activity in isolated spinach chloroplasts, Photosynth. Res., 24, 209-220 (1990)
[129] SONNEVELD, A.; RADEMAKER, H.; DUYSENS, L. N.M., Chlorophyll a fluorescence as a monitor of nanosecond reduction of the photooxidized primary donor \(P-680^+\) of photosystem II, Biochim. Biophys. Acta, 548, 536-551 (1979)
[130] SOROKIN, E. M., The induction curve of chlorophyll a fluorescence in DCMU-treated chloroplasts and its properties, Photobiochem. Photobiophys., 9, 3-19 (1985)
[131] SRIVASTAVA, A.; GUISSÉ, B.; GREPPIN, H.; STRASSER, R. J., Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP, Biochim. Biophys. Acta, 1320, 95-106 (1997)
[132] STEWART, D. H.; BRUDWIG, G. W., Cytochrome b559 of photosystem II, Biochim. Biophys. Acta, 1367, 63-87 (1998)
[133] STIEHL, H. H.; WITT, H. T., Quantitative treatment of the function of plastoquinone in photosynthesis, Z. Naturforsch. B, 24, 1588-1598 (1969)
[134] STIRBET, A.; STRASSER, R. J., Numerical simulation of the fluorescence induction in plants, Archs. Sci. Genéve, 48, 41-60 (1995)
[135] STIRBET, A.; STRASSER, R. J., The possible role of pheophytine in the fast fluorescence rise OKJIP, Proceedings of the 12th International Congress on Photosynthesis (2001), CSIRO Publishing: CSIRO Publishing Collingwood
[136] STIRBET, A.; GOVINDJEE; STRASSER, B. J.; STRASSER, R. J., Chlorophyll a fluorescence induction in higher plants: Modelling and numerical simulation, J. theor. Biol., 193, 131-151 (1998)
[137] STIRBET, A.; GOVINDJEE; STRASSER, B. J.; STRASSER, R. J., Numerical simulation of chlorophyll fluorescence induction in plants, (Mathis, P., Photosynthesis: from Light to Biosphere, II (1995), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 919-922
[138] STIRBET, A. D.; ROSENAU, P.; STRÖDER, A. C.; STRASSER, R. J., Parameter optimisation of fast chlorophyll fluorescence induction model, Math. Comput. Sim., 56, 443-450 (2001) · Zbl 0972.92020
[139] STRASSER, B. J., Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients, Photosynth. Res., 52, 147-155 (1997)
[140] STRASSER, R. J., The grouping model of plant photosynthesis: heterogeneity of photosynthetic units in thylakoids, (Akoyunoglou, G., Photosynthesis III: Structure and Molecular Organisation of the Photosynthetic Apparatus (1981), Balaban International Science Service: Balaban International Science Service Philadelphia), 727-737
[141] STRASSER, R. J.; GOVINDJEE, The \(F_0\) and the O-J-I-P fluorescence rise in higher plants and algae, (Argyroudi-Akoyunoglou, J. H., Regulation of Chloroplast Biogenesis (1991), Plenum Press: Plenum Press New York), 423-426
[142] STRASSER, R. J.; GOVINDJEE, On the O-J-I-P fluorescence transient in leaves and D1 mutants of Chlamydomonas reinhardtii, (Murata, M., Research in Photosynthesis, 2 (1992), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 29-32
[143] STRASSER, R. J.; GREPPIN, H., Primary reactions of photochemistry in higher plants, (Akoyunoglou, G., Photosynthesis III: Structure and Molecular Organisation of the Photosynthetic Apparatus (1981), Balaban International Science Service: Balaban International Science Service Philadelphia), 717-726
[144] STRASSER, R. J.; STIRBET, A., Simultaneous measurement of photosystem I and photosystem II probed by modulated transmission at 820 nm and by chlorophyll a fluorescence in the sub ms to second time range, Proceedings of the 12th International Congress on Photosynthesis (2001), CSIRO Publishing: CSIRO Publishing Collingwood
[145] STRASSER, R. J.; STIRBET, A. D., Heterogeneity of photosystem II probed by the numerically simulated chlorophyll a fluorescence rise (0-J-I-P), Math. Comput. Sim., 48, 3-9 (1998)
[146] STRASSER, R. J.; STIRBET, A. D., Estimation of the energetic connectivity of PS II centres in plants using the fluorescence rise O-J-I-P. Fitting of experimental data to three different PS II models, Math. Comput. Sim., 56, 451-461 (2001) · Zbl 1009.92026
[147] STRASSER, R. J.; SRIVASTAVA, A.; GOVINDJEE, Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria, Photochem. Photobiol., 61, 32-42 (1995)
[148] TELFER, A.; BARBER, J., Role of carotenoid bound to the photosystem II reaction centre, (Mathis, P., Photosynthesis: from Light to Biosphere, IV (1995), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 15-20
[149] THIELEN, A. P.G. M.; vAN GORKOM, H. J., Quantum efficiency and antenna size of photosystems \(II_α, II_β\) and I in tobacco chloroplasts, Biochim. Biophys. Acta, 635, 111-120 (1981)
[150] TOMEK, P.; LAZÁR, D.; ILÍK, P.; NAUŠ, J., On the intermediate steps between the O and P steps in chlorophyll a fluorescence rise measured at different intensities of exciting light, Aust. J. Plant Physiol., 28, 1151-1160 (2001)
[151] TREBST, A., The three-dimensional structure of the herbicide binding niche on the reaction centre polypeptides of photosystem II, Z. Naturforsch., 42C, 742-750 (1987)
[152] TREBST, A.; DRABER, W., Inhibitors of photosystem II and the topology of the herbicide and \(Q_B\) binding polypeptide in the thylakoid membrane, Photosynth. Res., 10, 381-392 (1986)
[153] TRISSL, H.-W.; LAVERGNE, J., Fluorescence induction from photosystem II: analytical equations for the yields of photochemistry and fluorescence derived from analysis of a model including exciton-radical pair equilibrium and restricted energy transfer between photosynthetic units, Aust. J. Plant Physiol., 22, 183-193 (1995)
[154] TRISSL, H.-W; GAO, Y.; WULF, K., Theoretical fluorescence induction curves derived from coupled differential equations describing the primary photochemistry of photosystem II by an exciton-radical pair equilibrium, Biophys. J., 64, 974-988 (1993)
[155] TSIMILLI-MICHAEL, M.; PECHEUX, M.; STRASSER, R. J., Vitality and stress adaptation of the symbionts of coral reef and temperature foraminifers probed in hospite by the fluorescence kinetics OJIP, Arch. Sci. Genéve, 51, 205-240 (1998)
[156] vAN AMERONGEN, H.; VALKUNAS, L.; vAN GRONDELLE, R., Nonlinear annihilation of excitons theory, (van Amerongen, H.; Valkunas, L.; van Grondelle, R., Photosynthetic Excitons (2000), World Scientific: World Scientific Singapore), 479-521
[157] vAN AMERONGEN, H.; VALKUNAS, L.; vAN GRONDELLE, R., Nonlinear Annihilation of Excitons. Experimental, (vAN AMERONGEN, H.; VALKUNAS, L.; vAN GRONDELLE, R., Photosynthetic Excitons (2000), World Scientific: World Scientific Singapore), 523-549
[158] vAN GRONDELLE, R., Excitation energy transfer, trapping and annihilation in photosynthetic systems, Biochim. Biophys. Acta, 811, 147-195 (1985)
[159] VASIL’EV, S.; ORTH, P.; ZOUNI, A.; OWENS, T. G.; BRUCE, D., Excited state dynamics in photosystem II: insights from the X-ray crystal structure, Proc. Natl. Acad. Sci. U.S.A., 98, 8602-8607 (2001)
[160] VASS, I.; INOUE, Y., Thermoluminescence in the study of photosystem II, (Barber, J., Topics in Photosynthesis. The Photosystems: Structure, Function and Molecular Biology (1992), Elsevier: Elsevier Amsterdam), 259-294
[161] VAVILIN, D. V.; TYYSTJÄRVI, E.; ARO, E.-M., Model for the fluorescence induction curve of photoinhibited thylakoids, Biophys. J., 75, 503-512 (1998)
[162] VELTHUYS, B. R.; AMESZ, J., Charge accumulation at the reducing side of system 2 of photosynthesis, Biochim. Biophys. Acta, 333, 85-94 (1974)
[163] VERMAAS, W. F.J.; RUTHERFORD, A. W.; HANSSON, O., Site-directed mutagenesis in photosystem II of the cyanobacterium Synechocystis sp PCC 6803: donor D is a tyrosyl residue in the D2 protein, Proc. Natl. Acad. Sci. U.S.A., 85, 8477-8481 (1988)
[164] VERNOTTE, C.; ETIENNE, A.-L.; BRIANTAIS, L.-M., Quenching of the system II chlorophyll fluorescence by the plastoquinone pool, Biochim. Biophys. Acta, 545, 519-527 (1979)
[165] VREDENBERG, W. J., A Three-state model for energy trapping and chlorophyll fluorescence in photosystem II incorporating radical pair recombination, Biophys. J., 79, 26-38 (2000)
[166] WALKER, D. A.; HORTON, P.; SIVAK, M. N.; QUICK, W. P., Anti-parallel ralationship between \(O_2\) evolution and slow fluorescence induction kinetics, Photobiochem. Photobiophys., 5, 35-39 (1983)
[167] WALKER, D. A.; SIVAK, M. N.; PRINSLEY, R. T.; CHEESBROUGH, J. K., Simultaneous measurement of excillations in oxygen evolution in chlorophyll a fluorescence in leaf pieces, Plant Physiol., 73, 542-549 (1983)
[168] WALKER, D. A., Secondary fluorescence kinetics of spinach leaves in relation to the onset of photosynthetic carbon assimilation, Planta, 153, 273-278 (1981)
[169] WHITMARSH, J.; ORT, D. R., Stoichiometries of electron transport complexes in spinach chloroplasts, Arch. Biochem. Biophys., 231, 378-389 (1984)
[170] WHITMARSH, J.; PAKRASI, H. D., Form and Function of Cytochrome \(b -559\), (Ort, D. R.; Yocum, C. F., Oxygenic Photosynthesis: The Light Reactions (1996), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 249-264
[171] YAMAGISHI, A.; SATOH, K.; KATOH, S., Fluorescence induction in chloroplasts isolated from the green alga Bryopsis maxima. III. A fluorescence transient indicating proton gradient across the thylakoid membrane, Plant Cell Physiol., 19, 17-25 (1978)
[172] ZOUNI, A.; WITT, H. T.; KERN, J.; FROMME, P.; KRAUB, N.; SAENGER, W.; ORTH, P., Crystal structure of photosystem II from Synecococcus elongatus at 3.8 Å resolution, Nature, 409, 739-743 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.