×

High-order extended finite element methods for solving interface problems. (English) Zbl 1442.74243

Summary: In this paper, we study arbitrary order extended finite element (XFE) methods based on two discontinuous Galerkin (DG) schemes in order to solve elliptic interface problems in two and three dimensions. Optimal error estimates in the piecewise \(H^1\)-norm and \(L^2\)-norm are rigorously proved for both schemes. In particular, we have devised a new parameter-friendly DG-XFEM method, which means that no “sufficiently large” parameters are needed to ensure the optimal convergence of the scheme. To prove the stability of bilinear forms, we derive non-standard trace and inverse inequalities for high-order polynomials on curved sub-elements divided by the interface. This paper is adapted from the work originally post on arXiv.com by the same authors [“High-order extended finite element methods for solving interface problems”, Preprint, arXiv:1604.06171]. New ingredients are an optimal multigrid solver for the generated linear system and its analysis. This multigrid method converges uniformly with respect to the mesh size, and is independent of the location of the interface relative to the meshes, just like all the other estimates in this paper. Numerical examples are given to support the theoretical results.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74A50 Structured surfaces and interfaces, coexistent phases

Software:

IIMPACK
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Xu, J., Estimate of the convergence rate of finite element solutions to elliptic equations of second order with discontinuous coefficients, Natur. Sci. J. Xiangtan Univ., 1, 1-5 (1982), (in Chinese)
[2] J. Xu, Estimate of the convergence rate of finite element solutions to elliptic equations of second order with discontinuous coefficients, arXiv:1311.4178.
[3] Chen, Z.; Zou, J., Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math., 79, 175-202 (1998) · Zbl 0909.65085
[4] Bramble, J. H.; King, J. T., A finite element method for interface problems in domains with smooth boundaries and interfaces, Adv. Comput. Math., 6, 109-138 (1996) · Zbl 0868.65081
[5] Li, J.; Melenk, J. M.; Wohlmuth, B.; Zou, J., Optimal a priori estimates for higher order finite elements for elliptic interface problems, Appl. Numer. Math., 60, 19-37 (2010) · Zbl 1208.65168
[6] Chen, Z.; Wu, Z.; Xiao, Y., An adaptive immersed finite element method with arbitrary Lagrangian-Eulerian scheme for parabolic equations in time variable domains, Int. J. Numer. Anal. Model., 12, 567-591 (2015) · Zbl 1499.65346
[7] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 220-252 (1977) · Zbl 0403.76100
[8] LeVeque, R.; Li, Z., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31, 1019-1044 (1994) · Zbl 0811.65083
[9] Li, Z.; Ito, K., The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains (2006), SIAM: SIAM Philadephia · Zbl 1122.65096
[10] Liu, X.; Fedkiw, R. P.; Kang, M., A boundary condition capturing method for Poisson’s equation on irregular domains, J. Comput. Phys., 160, 151-178 (2000) · Zbl 0958.65105
[11] Chu, C.-C.; Graham, I. G.; Hou, T. Y., A new multiscale finite element method for high-contrast elliptic interface problems, Math. Comp., 79, 1915-1955 (2010) · Zbl 1202.65154
[12] Gong, Y.; Li, B.; Li, Z., Immersed-interface finite-element methods for elliptic interface problems with non-homogeneous jump conditions, SIAM J. Numer. Anal., 46, 472-495 (2008) · Zbl 1160.65061
[13] Li, Z.; Lin, T.; Wu, X., New Cartesian grid methods for interface problems using the finite element formulation, Numer. Math., 96, 61-98 (2003) · Zbl 1055.65130
[14] Chen, Z.; Xiao, Y.; Zhang, L., The adaptive immersed interface finite element method for elliptic and Maxwell interface problems, J. Comput. Phys., 228, 5000-5019 (2009) · Zbl 1172.78008
[15] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Internat. J. Numer. Methods Engrg., 45, 601-620 (1999) · Zbl 0943.74061
[16] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 46, 131-150 (1999) · Zbl 0955.74066
[17] Fries, T.-P.; Belytschko, T., The extended/generalized finite element method: An overview of the method and its applications, Internat. J. Numer. Methods Engrg., 84, 253-304 (2010) · Zbl 1202.74169
[18] Nitsche, J., Uber ein Variationsprinzip zur Losung von Dirichlet-Problemen bei Verwendung von Teilraumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Semin. Univ. Hambg., 36, 9-15 (1970) · Zbl 0229.65079
[19] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on Nitsche’s method for elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 191, 5537-5552 (2002) · Zbl 1035.65125
[20] Babuška, I., The finite element method for elliptic equations with discontinuous coefficients, Computing, 5, 207-213 (1970) · Zbl 0199.50603
[21] Barrett, J. W.; Elliott, C. M., Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces, IMA J. Numer. Anal., 7, 283-300 (1987) · Zbl 0629.65118
[22] Burman, E.; Hansbo, P., Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Appl. Numer. Math., 62, 328-341 (2012) · Zbl 1316.65099
[23] Massjung, R., An unfitted discontinuous Galerkin method applied to elliptic interface problems, SIAM J. Numer. Anal., 50, 6, 3134-3162 (2012) · Zbl 1262.65178
[24] Wu, H.; Xiao, Y., An unfitted \(h p\)-interface penalty finite element method for elliptic interface problems, J. Comput. Math., 37, 316-339 (2019), also downloadable at http://arXiv.org/abs/1007.2893 · Zbl 1449.65326
[25] Burman, E.; Guzman, J.; Sanchez, M. A.; Sarkis, M., Robust flux error estimation of Nitsche’s method for high contrast interface problems, IMA J. Numer. Anal., 38, 646-668 (2018) · Zbl 1412.65204
[26] Wang, F.; Zhang, S., Optimal quadratic nitsche extended finite element method for solving interface problems, J. Comput. Math., 36, 693-717 (2018) · Zbl 1424.65226
[27] Lehrenfeld, C.; Reusken, A., Analysis of a high order unfitted finite element method for an elliptic interface problem, IMA J. Numer. Anal., 38, 1351-1387 (2018) · Zbl 1462.65193
[28] Huang, P.; Wu, H.; Xiao, Y., An unfitted interface penalty finite element method for elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 323, 439-460 (2017) · Zbl 1439.74422
[29] Hansbo, P., Nitsche’s method for interface problems in computational mechanics, GAMM-Mitt., 47, 183-206 (2005) · Zbl 1179.65147
[30] Hansbo, P.; Larson, M. G.; Zahedi, S., A cut finite element method for a Stokes interface problem, Appl. Numer. Math., 85, 90-114 (2014) · Zbl 1299.76136
[31] Johansson, A.; Larson, M. G., A high order discontinuous Galerkin nitsche method for elliptic problems with fictitious boundary, Numer. Math., 123, 607-628 (2013) · Zbl 1269.65126
[32] Xu, J.; Zhang, S., Optimal finite element methods for interface problems, (Dickopf, T.; etal., Domain Decomposition Methods in Science and Engineering XXII. Domain Decomposition Methods in Science and Engineering XXII, Lecture Notes in Computational Science and Engineering, vol. 104 (2016), Springer: Springer Cham), 77-91 · Zbl 1339.65224
[33] Xu, J., Iterative methods by space decomposition and subspace correction, SIAM Rev., 34, 581-613 (1992) · Zbl 0788.65037
[34] Xu, J.; Zikatanov, L., The method of alternating projections and the method of subspace corrections in Hilbert space, J. Amer. Math. Soc., 15, 573-597 (2002) · Zbl 0999.47015
[35] Arnold, D. N., An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19, 742-760 (1982) · Zbl 0482.65060
[36] Wheeler, M. F., An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal., 15, 152-161 (1978) · Zbl 0384.65058
[37] Riviere, B.; Wheeler, M. F.; Girault, V., Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. I, Comput. Geosci., 3, 337-360 (1999) · Zbl 0951.65108
[38] Gruber, P. M., Approximation of Convex Bodies, Convexity and Its Applications, 131-162 (1983), Birkhäuser Basel · Zbl 0519.52005
[39] Schwarzkopf, O.; Fuchs, U.; Rote, G., Approximation of convex figures by pairs of rectangles, Comput. Geom., 10, 77-87 (1998) · Zbl 0896.68144
[40] Schwab, Ch., \(P\)- and \(H p\)-Finite Element Methods (1998), Oxford University Press · Zbl 0910.73003
[41] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland: North-Holland Amsterdam · Zbl 0383.65058
[42] Xu, J.; Zikatanov, L., Algebraic multigrid methods, Acta Numer., 26, 591-721 (2017) · Zbl 1378.65182
[43] Xu, J.; Zhu, Y., Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients, Math. Models Methods Appl. Sci., 18, 77-105 (2008) · Zbl 1151.65097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.