×

Integrated design of control allocation and triple-step control for over-actuated electric ground vehicles with actuator faults. (English) Zbl 1437.93024

Summary: Over-actuated electric ground vehicles (EGVs) with four individually activated in-wheel motors can satisfy the requirements for the total wheel torque and yaw moment through control allocation (CA), which improves not only the driving flexibility, active safety and energy efficiency but also the probability of in-wheel motor faults due to the significantly increased system complexity and number of actuators. This paper studies the development of an active fault-tolerant control (AFTC) strategy that integrates CA and triple-step control (TSC) to produce a nominal feedback controller and simultaneously handle actuator faults. The closed-loop system under control is stabilized with input-to-state stability (ISS). A theoretical architecture of the proposed AFTC strategy for over-actuated EGVs is presented with a robust CA design and novel TSC with adaptive control compensation (ACC). In addition, a numerical iterative algorithm is proposed for the implementation of the ACC, and the convergence condition is given. The effectiveness of the proposed scheme is validated for a high-fidelity full-vehicle model constructed by the commercial software veDYNA.

MSC:

93B35 Sensitivity (robustness)
93B52 Feedback control
93D25 Input-output approaches in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wang, J.; Longoria, R. G., Coordinated and reconfigurable vehicle dynamics control, IEEE Trans. Control Syst. Technol., 17, 3, 723-732 (2009)
[2] Dizqah, A. M.; Lenzo, B.; Sorniotti, A.; Gruber, P.; Fallah, S.; Smet, J. D., A fast and parametric torque distribution strategy for four-wheel-drive energy-efficient electric vehicles, IEEE Trans. Ind. Electron., 63, 7, 4367-4376 (2016)
[3] Wang, R.; Zhang, H.; Wang, J.; Yan, F.; Chen, N., Robust lateral motion control of four-wheel independently actuated electric vehicles with tire force saturation consideration, J. Frankl. Inst., 352, 2, 645-668 (2015) · Zbl 1307.93134
[4] Durham, W., Constrained control allocation, J. Guid. Control Dyn., 16, 4, 717-725 (1993)
[5] Buffington, J. M.; Enns, D. F., Lyapunov stability analysis of daisy chain control allocation, J. Guid. Control Dyn., 19, 6, 1226-1230 (1996) · Zbl 0869.93034
[6] JAM, P.; Bodson, M., Constrained quadratic programming techniques for control allocation, IEEE Trans. Control Syst. Technol., 14, 1, 91-98 (2006)
[7] Bodson, M., Evaluation of optimization methods for control allocation, J. Guid. Control Dyn., 25, 4, 703-711 (2002)
[8] Zhao, H.; Ren, B.; Chen, H.; Deng, W., Model predictive control allocation for stability improvement of four-wheel drive electric vehicles in critical driving condition, IET Control Theory Appl., 9, 18, 2688-2696 (2015)
[9] Chen, Y.; Wang, J., Adaptive energy-efficient control allocation for planar motion control of over-actuated electric ground vehicles, IEEE Trans. Control Syst. Technol., 22, 4, 1362-1373 (2014)
[10] Zhang, X.; Goehlich, D.; Wei, Z., Karush-Kuhn-Tuckert based global optimization algorithm design for solving stability torque allocation of distributed drive electric vehicles, J. Franklin Inst., 354, 18, 8134-8155 (2017) · Zbl 1380.49032
[11] Khosravani, S.; Jalali, M.; Khajepour, A.; Kasaiezadeh, A.; Chen, S.; Litkouhi, B., Application of lexicographic optimization method to integrated vehicle control systems, IEEE Trans. Ind. Electron., 65, 12, 9677-9686 (2018)
[12] Wang, R.; Zhang, H.; Wang, J., Linear parameter-varying controller design for four-wheel independently actuated electric ground vehicles with active steering systems, IEEE Trans. Control Syst. Technol., 22, 4, 1281-1296 (2014)
[13] Wang, Y.; Yu, S.; Yuan, J.; Chen, H., Fault-tolerant control of electric ground vehicles using a triple-step nonlinear approach, IEEE/ASME Trans. Mechatron., 23, 4, 1775-1796 (2018)
[14] Wang, R.; Wang, J., Actuator-redundancy-based fault diagnosis for four-wheel independently actuated electric vehicles, IEEE Trans. Intell. Transp. Syst., 15, 1, 239-249 (2013)
[15] Zhang, H.; Wang, J., Active steering actuator fault detection for an automatically-steered electric ground vehicle, IEEE Trans. Veh. Technol., 66, 5, 3685-3702 (2017)
[16] Park, J.; Park, Y., Optimal input design for fault identification of overactuated electric ground vehicles, IEEE Trans. Veh. Technol., 65, 4, 1912-1923 (2016)
[17] Chen, H.; Gong, X.; Liu, Q.; Hu, Y., A triple-step method to design nonlinear controller for rail pressure of GDI engines, IET Control Theory Appl., 8, 11, 948-959 (2014)
[18] Wang, Y.; Bian, N.; Li, J.; Yuan, J.; Chen, H., A triple-step non-linear control for path following of autonomous vehicles with uncertain kinematics and dynamics, IET Control Theory Appl., 11, 18, 3381-3387 (2017)
[19] Rajamani, R., Vehicle Dynamics and Control (2006), Springer-Verlag: Springer-Verlag New York, NY, USA · Zbl 1097.70001
[20] Li, B.; Du, H.; Li, W., Fault-tolerant control of electric vehicles with in-wheel motors using actuator-grouping sliding mode controllers, Mech. Syst. Signal Process., 72-73, 462-485 (2018)
[21] Hu, C.; Wang, R.; Yan, F.; Chen, N., Output constraint control on path following of four-wheel independently actuated autonomous ground vehicles, IEEE Trans. Veh. Technol., 65, 6, 4033-4043 (2016)
[22] Jing, H.; Wang, R.; Wang, J.; Chen, N., Robust h_∞ dynamic output-feedback control for four-wheel independently actuated electric ground vehicles through integrated AFS/DYC, J. Frankl. Inst., 355, 18, 9321-9350 (2018) · Zbl 1404.93015
[23] Jin, X.; Yin, G.; Zeng, X.; Chen, J., Robust gain-scheduled output feedback yaw stability control for in-wheel-motor-driven vehicles with external yaw-moment, J. Frankl. Inst., 355, 18, 9271-9297 (2018) · Zbl 1404.93027
[24] Wang, Y.; Wang, Z.; Zhang, L.; Liu, M.; Zhu, J., Lateral stability enhancement based on a novel sliding mode prediction control for a four-wheel-independently actuated electric vehicle, IET Intel. Transp. Syst., 13, 1, 124-133 (2018)
[25] Wang, Y.; Zong, C.; Li, K.; Chen, H., Fault-tolerant control for in-wheel-motor-driven electric ground vehicles in discrete time, Mech. Syst. Signal Process., 121, 441-454 (2019)
[26] Ghaoui, L. E.; Lebret, H., Robust solutions to least-squares problems with uncertain data, SIAM J. Matrix Anal. A., 18, 4, 1035-1064 (1997) · Zbl 0891.65039
[27] Boyd, S.; Vandenberghe, L., Convex Optimization (2004), Cambridge University Press: Cambridge University Press Berlin, Germany · Zbl 1058.90049
[28] Henrion, D.; Lasserre, J. B., Gloptipoly: global optimization overpolynomials with MATLAB and sedumi, Proceedings of the 41st IEEE Conference on Desicion and Control, Las Vegas, USA, 10-13 (2002)
[29] 091010
[30] Tang, C.; Ataei, M.; Khajepour, A., A reconfigurable integrated control for narrow tilting vehicle, IEEE Trans. Veh. Technol., 68, 1, 234-244 (2019)
[31] 021014
[32] Wada, N.; Fujii, K.; Saeki, M., Reconfigurable fault-tolerant controller synthesis for a steer-by-wire vehicle using independently driven wheels, Veh. Syst. Dyn., 51, 9, 1438-1465 (2013)
[33] Zhang, D.; Liu, G.; Zhou, H.; Zhao, W., Adaptive sliding mode fault-tolerant coordination control for four-wheel independently driven electric vehicles, IEEE Trans. Ind. Electron., 65, 11, 9090-9100 (2018)
[34] Chen, T.; Chen, H.; Xu, X.; Cai, Y.; Jiang, H.; Sun, X., Passive fault-tolerant path following control of autonomous distributed drive electric vehicle considering steering system fault, Mech. Syst. Signal Process, 123, 298-315 (2019)
[35] Hamayun, M. T.; Edwards, C.; Alwi, H., Design and analysis of an integral sliding mode fault-tolerant control scheme, IEEE Trans. Autom. Control., 57, 7, 1783-1789 (2012) · Zbl 1369.93125
[36] Hamayun, M. T.; Edwards, C.; Alwi, H., A fault tolerant control allocation scheme with output integral sliding modes, Automatica, 49, 1830-1837 (2013) · Zbl 1360.93204
[37] Cristofaro, A.; Johansen, T. A., Fault tolerant control allocation using unknown input observer, Automatica, 50, 1897-1981 (2014) · Zbl 1296.93045
[38] Rios, H.; Kamal, S.; Fridman, L. M.; Zolghadri, A., Fault tolerant control allocation via continuous integral sliding-modes: a HOSM-observer approach, Automatica, 51, 318-325 (2015) · Zbl 1309.93053
[39] Shen, Q.; Wang, D.; Zhu, S.; Poh, E. K., Inertia-free fault-tolerant spacecraft attitude tracking using control allocation, Automatica, 62, 114-121 (2015) · Zbl 1329.93058
[40] Loza, A. F.; Cieslak, J.; Henry, D.; Zolghadri, A.; Fridman, L. M., Output tracking of systems subjected to perturbations and a class of actuator faults based on HOSM observation and identification, Automatica, 59, 200-205 (2015) · Zbl 1326.93034
[41] 04015042
[42] Zhi, J.; Chen, Y.; Dong, X.; Liu, Z.; Shi, C., Robust adaptive FTC allocation for over-actuated systems with uncertainties and unknown actuator non-linearity, IET Control Theory A, 12, 2, 273-281 (2018)
[43] Gui, H.; de Ruiter, H. J., Adaptive fault-tolerant spacecraft pose tracking with control allocation, IEEE Trans. Control Syst. Technol., 27, 2, 479-494 (2019)
[44] Guo, H.; Cao, D. P.; Chen, H.; Lv, C.; Wang, H. J.; Yang, S. Q., Vehicle dynamic state estimation: state of the art schemes and perspectives, IEEE/CAA J. Autom. Sin., 5, 1, 418-431 (2018)
[45] Guo, Y.; Jiang, B.; Zhang, Y., A novel robust attitude control for quadrotor aircraft subject to actuator faults and wind gusts, IEEE/CAA J. Autom. Sin., 5, 1, 292-300 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.