×

Reaction control system optimization for maneuverable reentry vehicles based on particle swarm optimization. (English) Zbl 1459.70047

Summary: This paper presents a new parametric optimization design to solve a class of reaction control system (RCS) problem with discrete switching state, flexible working time, and finite-energy control for maneuverable reentry vehicles. Based on basic particle swarm optimization (PSO) method, an exponentially decreasing inertia weight function is introduced to improve convergence performance of the PSO algorithm. Considering the PSO algorithm spends long calculation time, a suboptimal control and guidance scheme is developed for online practical design. By tuning the control parameters, we try to acquire efficacy as close as possible to that of the PSO-based solution which provides a reference. Finally, comparative simulations are conducted to verify the proposed optimization approach. The results indicate that the proposed optimization and control algorithm has good performance for such RCS of maneuverable reentry vehicles.

MSC:

70P05 Variable mass, rockets
93C95 Application models in control theory
90C59 Approximation methods and heuristics in mathematical programming

Software:

OTIS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Shao, X.; Wang, H., Active disturbance rejection based trajectory linearization control for hypersonic reentry vehicle with bounded uncertainties, ISA Transactions, 54, 27-38 (2015) · doi:10.1016/j.isatra.2014.06.010
[2] Hwang, T. W.; Park, C.-S.; Tahk, M.-J.; Bang, H., Upper-stage launch vehicle servo controller design considering optimal thruster configuration, Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit
[3] Wise, K. A.; roy, D. J. B., Agile missile dynamics and control, Journal of Guidance, Control, and Dynamics, 21, 3, 441-449 (1998) · doi:10.2514/2.4256
[4] He, J.; Qi, R.; Jiang, B.; Zhai, R., Fault-tolerant control with mixed aerodynamic surfaces and RCS jets for hypersonic reentry vehicles, Chinese Journal of Aeronautics, 30, 2, 780-795 (2017) · doi:10.1016/j.cja.2017.01.003
[5] Wang, X.; Wang, D.; Zhu, S.; Poh, E. K., Fractional describing function analysis of PWPF modulator, Mathematical Problems in Engineering, 2013 (2013) · doi:10.1155/2013/287040
[6] Anthony, T. C.; Wie, B.; Carroll, S., Pulse-modulated control synthesis for a flexible spacecraft, Journal of Guidance, Control, and Dynamics, 13, 6, 1014-1022 (1990) · doi:10.2514/3.20574
[7] Liu, X.; Willms, A. R., Impulsive controllability of linear dynamical systems with applications to maneuvers of spacecraft, Mathematical Problems in Engineering, 2, 4, 277-299 (1996) · Zbl 0876.93014 · doi:10.1155/s1024123x9600035x
[8] Enright, P. J.; Conway, B. A., Discrete approximations to optimal trajectories using direct transcription and nonlinear programming, Journal of Guidance, Control, and Dynamics, 15, 4, 994-1002 (1992) · Zbl 0776.49015 · doi:10.2514/3.20934
[9] Hargraves, C. R.; Paris, S. W., Direct trajectory optimization using nonlinear programming and collocation, Journal of Guidance, Control, and Dynamics, 10, 4, 338-342 (1987) · Zbl 0634.65052 · doi:10.2514/3.20223
[10] Ranieri, C. L.; Ocampo, C. A., Indirect optimization of three-dimensional finite-burning interplanetary transfers including spiral dynamics, Journal of Guidance, Control, and Dynamics, 32, 2, 445-455 (2009) · doi:10.2514/1.38170
[11] Kechichian, J. A., Optimal low-earth-orbit-geostationary-earth-orbit intermediate acceleration orbit transfer, Journal of Guidance, Control, and Dynamics, 20, 4, 803-811 (1997) · Zbl 0885.70020 · doi:10.2514/2.4116
[12] Jiang, F.; Baoyin, H.; Li, J., Practical techniques for low-thrust trajectory optimization with homotopic approach, Journal of Guidance, Control, and Dynamics, 35, 1, 245-258 (2012) · doi:10.2514/1.52476
[13] Sun, R.-s.; Ming, C., Velocity control for coning motion missile system using direct discretization method, Discrete Dynamics in Nature and Society, 2015 (2015) · Zbl 1418.93195 · doi:10.1155/2015/716547
[14] Sun, R.; Hong, Q.; Zhu, G., A novel optimal control method for impulsive-correction projectile based on particle swarm optimization, Discrete Dynamics in Nature and Society, 2016 (2016) · Zbl 1372.49046 · doi:10.1155/2016/5098784
[15] Zhao, G.; Su, Z.-g.; Zhan, J.; Zhu, H.; Zhao, M., Adaptively receding galerkin optimal control for a nonlinear boiler-turbine unit, Complexity, 2018 (2018) · Zbl 1405.93172 · doi:10.1155/2018/8643623
[16] Darby, C. L.; Hager, W. W.; Rao, A. V., Direct trajectory optimization using a variable low-order adaptive pseudospectral method, Journal of Spacecraft and Rockets, 48, 3, 433-445 (2011) · doi:10.2514/1.52136
[17] Khader, M. M.; Sweilam, N. H.; Kota, W. Y., Cardinal functions for Legendre pseudo-spectral method for solving the integro-differential equations, Journal of the Egyptian Mathematical Society, 22, 3, 511-516 (2014) · Zbl 1302.65281 · doi:10.1016/j.joems.2013.10.004
[18] Premalatha, K.; Natarajan, A., Hybrid PSO and GA for global maximization, International Journal of Open Problems in Computer Science and Mathematics, 2, 4, 597-608 (2009) · Zbl 1206.90225
[19] El-Shorbagy, M. A.; Hassanien, A. E., Particle swarm optimization from theory to applications, International Journal of Rough Sets and Data Analysis, 5, 2, 1-24 (2018) · doi:10.4018/ijrsda.2018040101
[20] Eberhart, R.; Kennedy, J., A new optimizer using particle swarm theory, Proceedings of the Sixth International Symposium on Micro Machine and Human Science. MHS’95, IEEE
[21] Laskari, E. C.; Parsopoulos, K. E.; Vrahatis, M. N., Particle swarm optimization for integer programming, Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), IEEE
[22] Pires, E. S.; Machado, J. T.; de Moura Oliveira, P.; Cunha, J. B.; Mendes, L., Particle swarm optimization with fractional-order velocity, Nonlinear Dynamics, 61, 1-2, 295-301 (2010) · Zbl 1204.90119
[23] Yang, H.; Dou, L.; Gan, M., A particle swarm optimization for fuel-optimal impulsive control problems of guided projectile, Proceedings of Chinese Control and Decision Conference, IEEE
[24] Rahimi, A.; Dev Kumar, K.; Alighanbari, H., Particle swarm optimization applied to spacecraft reentry trajectory, Journal of Guidance, Control, and Dynamics, 36, 1, 307-310 (2012)
[25] Zhou, H.; Wang, X.; Bai, B.; Cui, N., Reentry guidance with constrained impact for hypersonic weapon by novel particle swarm optimization, Aerospace Science and Technology, 78, 205-213 (2018) · doi:10.1016/j.ast.2018.04.024
[26] Pan, J. J.; Feng, K.; Huan-Liang, L. I.; Yang, X. Q., Ballistic method of mine-laying rocket based on multi-objective particle swarm optimization, Fire Control & Command Control, 43, 1, 157-161 (2018), in Chinese
[27] Shneydor, N. A., Missile Guidance and Pursuit: Kinematics, Dynamics and Control (1998), Amsterdam, Netherlands: Elsevier, Amsterdam, Netherlands
[28] Duan, H.; Li, S., Artificial bee colony-based direct collocation for reentry trajectory optimization of hypersonic vehicle, IEEE Transactions on Aerospace and Electronic Systems, 51, 1, 615-626 (2015) · doi:10.1109/taes.2014.120654
[29] Wie, B., Space Vehicle Dynamics and Control (2008), Reston, VA, USA: American Institute of Aeronautics and Astronautics, Reston, VA, USA
[30] Guo, J.; Tang, S.-J.; Li, X.; Yang, C.-L., Optimum design of the project trajectory based on an improved particle swarm optimization, Transactions of Beijing Institute of Technology, 30, 6, 688-692 (2010), in Chinese
[31] Jing, C., Ballistic method based on improved particle swarm optimization algorithm, Journal of Southeast University (Natural Science Edition), 43, S1, 215-218 (2013), in Chinese
[32] Rao, S. S., Engineering Optimization: Theory and Practice (2019), Hoboken, NJ, USA: John Wiley & Sons, Hoboken, NJ, USA
[33] Eberhart, R.; Simpson, P.; Dobbins, R., Computational Intelligence PC Tools (1996), Cambridge, MA, USA: Academic Press Professional, Inc., Cambridge, MA, USA
[34] Kennedy, J.; Eberhart, R., Particle swarm optimization (PSO), Proceedings of IEEE International Conference on Neural Networks
[35] Shi, Y.; Eberhart, R. C., Parameter selection in particle swarm optimization, Proceedings of International Conference on Evolutionary Programming, Springer
[36] Kienitz, K. H.; Bals, J., Pulse modulation for attitude control with thrusters subject to switching restrictions, Aerospace Science and Technology, 9, 7, 635-640 (2005) · Zbl 1195.70050 · doi:10.1016/j.ast.2005.06.006
[37] Chegeni, E.; Zandieh, M.; Ebrahimi, J., Attitude control of satellite with PWPF modulator using predictive control algorithms, Majlesi Journal of Electrical Engineering, 8, 3, 25-31 (2014)
[38] Xinsheng, W.; Huaqiang, Z., Fractional order controller for satellite attitude control system with PWPF modulator, Proceedings of 34th Chinese Control Conference, IEEE
[39] Lian, Y.; Tang, G., Libration point orbit rendezvous using PWPF modulated terminal sliding mode control, Advances in Space Research, 52, 12, 2156-2167 (2013) · doi:10.1016/j.asr.2013.08.034
[40] Wang, R.; Tang, S.; Zhang, D., Short-range reentry guidance with impact angle and impact velocity constraints for hypersonic gliding reentry vehicle, IEEE Access, 7, 47437-47450 (2019) · doi:10.1109/access.2019.2909589
[41] Sun, S.; Zhou, D.; Hou, W.-t., A guidance law with finite time convergence accounting for autopilot lag, Aerospace Science and Technology, 25, 1, 132-137 (2013) · doi:10.1016/j.ast.2011.12.016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.