×

Circularly polarized gamma rays in effective dark matter theory. (English) Zbl 1434.81157

Summary: We study the loop-induced circularly polarized gamma rays from dark matter annihilation using the effective dark matter theory approach. Both neutral scalar and fermionic dark matter annihilating into monochromatic diphoton and \(Z\)-photon final states are considered. To generate the circular polarization asymmetry, \(P\) and CP symmetries must be violated in the couplings between dark matter and Standard Model fermions inside the loop with non-vanishing Cutkosky cut. The asymmetry can be sizable especially for \(Z\)-photon final state for which asymmetry of nearly 90% can be reached. We discuss the prospect for detecting the circular polarization asymmetry of the gamma-ray flux from dark matter annihilation in the Galactic Center in future gamma-ray polarimetry experiments.

MSC:

81V25 Other elementary particle theory in quantum theory

Software:

FeynCalc
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ade, P. A.R., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys., 594, A13 (2016)
[2] Aghanim, N., Planck 2018 results. VI. Cosmological parameters (2018)
[3] Tanabashi, M., Review of particle physics, Phys. Rev. D, 98, 3, Article 030001 pp. (2018)
[4] (Aharonian, Felix A.; Hofmann, Werner; Rieger, Frank M., Proceedings, 6th International Symposium on High-Energy Gamma-Ray Astronomy. Proceedings, 6th International Symposium on High-Energy Gamma-Ray Astronomy, Gamma 2016, vol. 1792 (2017))
[5] Ibarra, Alejandro; Lopez-Gehler, Sergio; Molinaro, Emiliano; Pato, Miguel, Gamma-ray triangles: a possible signature of asymmetric dark matter in indirect searches, Phys. Rev. D, 94, 10, Article 103003 pp. (2016)
[6] Kumar, Jason; Sandick, Pearl; Teng, Fei; Yamamoto, Takahiro, Gamma-ray signals from dark matter annihilation via charged mediators, Phys. Rev. D, 94, 1, Article 015022 pp. (2016)
[7] Bonivento, W.; Gorbunov, D.; Shaposhnikov, M.; Tokareva, A., Polarization of photons emitted by decaying dark matter, Phys. Lett. B, 765, 127-131 (2017)
[8] Bœhm, Céline; Degrande, Céline; Mattelaer, Olivier; Vincent, Aaron C., Circular polarisation: a new probe of dark matter and neutrinos in the sky, J. Cosmol. Astropart. Phys., 1705, 05, Article 043 pp. (2017)
[9] Elagin, Andrey; Kumar, Jason; Sandick, Pearl; Teng, Fei, Prospects for detecting a net photon circular polarization produced by decaying dark matter, Phys. Rev. D, 96, 9, Article 096008 pp. (2017)
[10] Huang, Wei-Chih; Ng, Kin-Wang, Polarized gamma rays from dark matter annihilations, Phys. Lett. B, 783, 29-35 (2018)
[11] Queiroz, Farinaldo S.; Yaguna, Carlos E., Gamma-ray lines may reveal the CP nature of the dark matter particle, J. Cosmol. Astropart. Phys., 1901, Article 047 pp. (2019)
[12] Manohar, Aneesh; Georgi, Howard, Chiral quarks and the nonrelativistic quark model, Nucl. Phys. B, 234, 189-212 (1984)
[13] Hagiwara, Kaoru; Zeppenfeld, D., Helicity amplitudes for heavy lepton production in e+ e- annihilation, Nucl. Phys. B, 274, 1-32 (1986)
[14] Mertig, R.; Bohm, M.; Denner, Ansgar, FEYN CALC: computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun., 64, 345-359 (1991)
[15] Shtabovenko, Vladyslav; Mertig, Rolf; Orellana, Frederik, New developments in FeynCalc 9.0, Comput. Phys. Commun., 207, 432-444 (2016) · Zbl 1375.68227
[16] Hahn, T.; Perez-Victoria, M., Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun., 118, 153-165 (1999)
[17] Passarino, G.; Veltman, M. J.G., One loop corrections for e+ e- annihilation into mu+ mu- in the Weinberg model, Nucl. Phys. B, 160, 151-207 (1979)
[18] Rosenberg, Leonard, Electromagnetic interactions of neutrinos, Phys. Rev., 129, 2786-2788 (1963) · Zbl 0106.20804
[19] (Deser, Stanley D.; Grisaru, Marc T.; Pendleton, Hugh, Proceedings, 13th Brandeis University Summer Institute in Theoretical Physics. Proceedings, 13th Brandeis University Summer Institute in Theoretical Physics, Lectures on Elementary Particles and Quantum Field Theory (1970), MIT, MIT: MIT, MIT Cambridge, MA, USA)
[20] Cirelli, Marco; Corcella, Gennaro; Hektor, Andi; Hutsi, Gert; Kadastik, Mario; Panci, Paolo; Raidal, Martti; Sala, Filippo; Strumia, Alessandro, PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection, J. Cosmol. Astropart. Phys.. J. Cosmol. Astropart. Phys., J. Cosmol. Astropart. Phys., 1210, Article E01 pp. (2012), Erratum:
[21] Ciafaloni, Paolo; Comelli, Denis; Riotto, Antonio; Sala, Filippo; Strumia, Alessandro; Urbano, Alfredo, Weak corrections are relevant for dark matter indirect detection, J. Cosmol. Astropart. Phys., 1103, Article 019 pp. (2011)
[22] Gros, P., Performance measurement of HARPO: a time projection chamber as a gamma-ray telescope and polarimeter, Astropart. Phys., 97, 10-18 (2018)
[23] Knödlseder, Jürgen, The future of gamma-ray astronomy, C. R. Phys., 17, 663-678 (2016)
[24] Moiseev, Alexander, On behalf of the amego team. All-sky medium energy gamma-ray observatory (AMEGO), PoS, C2017, 798 (2018)
[25] Calore, Francesca; Cholis, Ilias; Weniger, Christoph, Background model systematics for the Fermi GeV excess, J. Cosmol. Astropart. Phys., 1503, Article 038 pp. (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.