×

An efficient forward propagation of multiple random fields using a stochastic Galerkin scaled boundary finite element method. (English) Zbl 1442.74233

Summary: This paper serves to extend the existing literature on the Stochastic Galerkin Scaled Boundary Finite Element Method (SGSBFEM) in two ways. The first part of this work deals with the formulation of multiple non-correlated Gaussian random fields using the conventional Karhunen-Loéve expansion technique and its forward propagation through the Spectral Stochastic Scaled Boundary Finite Element setting using the polynomial surface fit method in terms of the scaled boundary coordinates. The advantages in adopting such a forward propagation technique in capturing the statistical moments of Quantities of Interest (QoI) across the domain, are highlighted using carefully chosen linear elastic problems having large to least correlated random fields as inputs. The second contribution is the extension of the proposed forward Uncertainty Quantification (UQ) to take into account multiple independent random fields, followed by Polynomial Chaos Expansion (PCE) based sensitivity analysis. Both the computational efficiency and the accuracy of the proposed framework under different input random field correlation settings are elaborated upon by comparing their results against that obtained using the current existing SGSBFEM in the literature. Moreover, the stochastic results are validated for all the numerical examples using the Monte Carlo method.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics

Software:

PolyMesher
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Stefanou, G., The stochastic finite element method: Past, present and future, Comput. Methods Appl. Mech. Engrg., 198, 9, 1031-1051 (2009) · Zbl 1229.74140
[2] Arregui-Mena, J. D.; Margetts, L.; Mummery, P. M., Practical application of the stochastic finite element method, Arch. Comput. Methods Eng., 23, 1, 171-190 (2016) · Zbl 1348.65160
[3] Soize, C., Stochastic modeling of uncertainties in computational structural dynamics—Recent theoretical advances, J. Sound Vib., 332, 10, 2379-2395 (2013)
[4] Astill, C. J.; Imosseir, S. B.; Shinozuka, M., Impact loading on structures with random properties, J. Struct. Mech., 1, 1, 63-77 (1972)
[5] Geißendörfer, M.; Liebscher, A.; Proppe, C.; Redenbach, C.; Schwarzer, D., Stochastic multiscale modeling of metal foams, Probab. Eng. Mech., 37, 132-137 (2014)
[6] Jeong, G. Y.; Hindman, D. P., Ultimate tensile strength of loblolly pine strands using stochastic finite element method, J. Mater. Sci., 44, 14, 3824-3832 (2009)
[7] Xia, B.; Yu, D., Response probability analysis of random acoustic field based on perturbation stochastic method and change of variable technique, J. Vib. Acoust., 135, 5, 1-11 (2013)
[8] Xia, B.; Yu, D.; Liu, J., Transformed perturbation stochastic finite element method for static response analysis of stochastic structures, Finite Elem. Anal. Des., 79, 9-21 (2014)
[9] Xia, B.; Yu, D., Change-of-variable interval stochastic perturbation method for hybrid uncertain structural-acoustic systems with random and interval variables, J. Fluids Struct., 50, 461-478 (2014)
[10] Ghanem, R. G.; Kruger, R. M., Numerical solution of spectral stochastic finite element systems, Comput. Methods Appl. Mech. Engrg., 129, 3, 289-303 (1996) · Zbl 0861.73071
[11] Stefanou, G.; Papadrakakis, M., Assessment of spectral representation and Karhunen-Loève expansion methods for the simulation of Gaussian stochastic fields, Comput. Methods Appl. Mech. Engrg., 196, 21, 2465-2477 (2007) · Zbl 1173.65302
[12] Papadopoulos, V.; Stefanou, G.; Papadrakakis, M., Buckling analysis of imperfect shells with stochastic non-Gaussian material and thickness properties, Int. J. Solids Struct., 46, 14, 2800-2808 (2009) · Zbl 1167.74427
[13] Ghosh, D.; Avery, P.; Farhat, C., A FETI-preconditioned conjugate gradient method for large-scale stochastic finite element problems, Internat. J. Numer. Methods Engrg., 80, 6-7, 914-931 (2009) · Zbl 1176.74182
[14] Xiong, F.; Greene, S.; Chen, W.; Xiong, Y.; Yang, S., A new sparse grid based method for uncertainty propagation, Struct. Multidiscip. Optim., 41, 3, 335-349 (2010) · Zbl 1274.65069
[15] Anitescu, C.; Atroshchenko, E.; Alajlan, N.; Rabczuk, T., Artificial neural network methods for the solution of second order boundary value problems, Comput. Mater. Contin., 59, 1, 345-359 (2019)
[16] Guo, H.; Zhuang, X.; Rabczuk, T., A deep collocation method for the bending analysis of Kirchhoff plate, Comput. Mater. Contin., 59, 2, 433-456 (2019)
[17] Liu, G.; Zeng, W.; Nguyen-Xuan, H., Generalized stochastic cell-based smoothed finite element method (GS-CS-FEM) for solid mechanics, Finite Elem. Anal. Des., 63, 51-61 (2013) · Zbl 1282.74090
[18] Talha, M.; Singh, B., Stochastic vibration characteristics of finite element modelled functionally gradient plates, Compos. Struct., 130, 95-106 (2015)
[19] Shaker, A.; Abdelrahman, W.; Tawfik, M.; Sadek, E., Stochastic finite element analysis of the free vibration of functionally graded material plates, Comput. Mech., 41, 5, 707-714 (2008) · Zbl 1162.74476
[20] Sepahvand, K.; Marburg, S.; Hardtke, H.-J., Stochastic free vibration of orthotropic plates using generalized polynomial chaos expansion, J. Sound Vib., 331, 1, 167-179 (2012)
[21] Parhi, A.; Singh, B., Stochastic response of laminated composite shell panel in hygrothermal environment, Mech. Based Des. Struct. Mach. Int. J., 43, 314-341 (2013)
[22] Li, K.; Gao, W.; Wu, D.; Song, C.; Chen, T., Spectral stochastic isogeometric analysis of linear elasticity, Comput. Methods Appl. Mech. Engrg., 332, 157-190 (2018) · Zbl 1439.74441
[23] Hien, T. D.; Noh, H.-C., Stochastic isogeometric analysis of free vibration of functionally graded plates considering material randomness, Comput. Methods Appl. Mech. Engrg., 318, 845-863 (2017) · Zbl 1439.74135
[24] Wu, F.; Gao, Q.; Xu, X.-M.; Zhong, W.-X., A modified computational scheme for the stochastic perturbation finite element method, Lat. Am. J. Solids Struct., 12, 2480-2505 (2015)
[25] Nouy, A.; Clément, A., Extended stochastic finite element method for the numerical simulation of heterogeneous materials with random material interfaces, Internat. J. Numer. Methods Engrg., 83, 1312-1344 (2010) · Zbl 1202.74182
[26] Savvas, D.; Stefanou, G., Assessment of the effect of microstructural uncertainty on the macroscopic properties of random composite materials, J. Compos. Mater., 51, 2707-2725 (2013)
[27] Bahmyari, E.; Khedmati, M. R.; Soares, C. G., Stochastic analysis of moderately thick plates using the generalized polynomial chaos and element free Galerkin method, Eng. Anal. Bound. Elem., 79, 23-37 (2017) · Zbl 1403.74095
[28] Sasikumar, P.; Suresh, R.; Gupta, S., Stochastic finite element analysis of layered composite beams with spatially varying non-Gaussian inhomogeneities, Acta Mech., 225, 6, 1503-1522 (2014) · Zbl 1401.74293
[29] Sasikumar, P.; Suresh, R.; Gupta, S., Stochastic model order reduction in uncertainty quantification of composite structures, Compos. Struct., 128, 21-34 (2015)
[30] Bianchini, I.; Argiento, R.; Auricchio, F.; Lanzarone, E., Efficient uncertainty quantification in stochastic finite element analysis based on functional principal components, Comput. Mech., 56, 3, 533-549 (2015) · Zbl 1326.65158
[31] Wolf, J. P.; Song, C., The scaled boundary fnite-element method - a primer: derivations, Comput. Struct., 78, 191-210 (1999)
[32] Wolf, J. P.; Song, C., Unit-impulse response of unbounded medium by scaled boundary finite-element method, Comput. Methods Appl. Mech. Engrg., 159, 3-4, 355-367 (1998) · Zbl 0952.74079
[33] Natarajan, S.; Wang, J.; Song, C.; Birk, C., Isogeometric analysis enhanced by the scaled boundary finite element method, Comput. Methods Appl. Mech. Engrg., 283, 733-762 (2015) · Zbl 1425.65174
[34] Gravenkamp, H.; Natarajan, S.; Dornisch, W., On the use of NURBS-based discretizations in the scaled boundary finite element method for wave propagation problems, Comput. Methods Appl. Mech. Engrg., 315, 867-880 (2017) · Zbl 1439.74484
[35] Song, C.; Tin-Loi, F.; Gao, W., A definition and evaluation procedure of generalized stress intensity factors at cracks and multi-material wedges, Eng. Fract. Mech., 77, 12, 2316-2336 (2010)
[36] Song, C.; Ooi, E. T.; Natarajan, S., A review of the scaled boundary finite element method for two-dimensional linear elastic fracture mechanics, Eng. Fract. Mech., 165, 45-73 (2018)
[37] Long, X.; Jiang, C.; Han, X.; Gao, W., Stochastic response analysis of the scaled boundary finite element method and application to probabilistic fracture mechanics, Comput. Struct., 153, 185-200 (2015)
[38] Long, X.; Jiang, C.; Yang, C.; Han, X.; Gao, W.; Liu, J., A stochastic scaled boundary finite element method, Comput. Methods Appl. Mech. Engrg., 308, 23-46 (2016) · Zbl 1439.74445
[39] Long, X. Y.; Jiang, C.; Han, X.; Gao, W.; Zhang, D. Q., Stochastic fracture analysis of cracked structures with random field property using the scaled boundary finite element method, Int. J. Fract., 195, 1, 1-14 (2015)
[40] Minh, D. D.; Gao, W.; Saputra, A.; Song, C.; Leong, C. H., The stochastic Galerkin scaled boundary finite element method on random domain, Internat. J. Numer. Methods Engrg., 110, 3, 248-278 (2017) · Zbl 1365.65252
[41] Chen, X.; Luo, T.; Ooi, E.; Ooi, E.; Song, C., A quadtree-polygon-based scaled boundary finite element method for crack propagation modeling in functionally graded materials, Theor. Appl. Fract. Mech., 94, 120-133 (2018)
[42] Pol D. Spanos, R. G.G., Stochastic Finite Elements: A Spectral Approach (1991), Springer · Zbl 0722.73080
[43] Sudret, B.; der Kiureghan, A., Stochastic Finite Element Methods and Reliability: A State-of-the-Art ReportTechnical Report (2000), University of California Berkeley
[44] P., H. S.; T., Q. S.; K., P. K., Convergence study of the truncated Karhunen-Loeve expansion for simulation of stochastic processes, Internat. J. Numer. Methods Engrg., 52, 9, 1029-1043 (2001) · Zbl 0994.65004
[45] Atkinson, K. E., (The Numerical Solution of Integral Equations of the Second Kind. The Numerical Solution of Integral Equations of the Second Kind, Cambridge Monographs on Applied and Computational Mathematics (1997), Cambridge University Press) · Zbl 0899.65077
[46] Hurtado, J. E., Analysis of one-dimensional stochastic finite elements using neural networks, Probab. Eng. Mech., 17, 1, 35-44 (2002)
[47] Sudret, B.; Kiureghian, A. D.; Sudret, B.; Kiureghian, A. D., Stochastic Finite Element Methods and Reliability: A State-of-the-Art ReportTechnical Report (2000)
[48] Sephvand, K., Uncertainty quantification in Stochastic Forward and Inverse Vibration Problems using Generalized Polynomial Chaos Expansion (2008), Technische Universität Dresden, Fakultät fúr Maschinenwesen, Institut für Festkörpermechanik, (Ph.D. thesis)
[49] Song, C.; Wolf, J. P., The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method for elastodynamics, Comput. Methods Appl. Mech. Engrg., 147, 3, 329-355 (1997) · Zbl 0897.73069
[50] Song, C.; Wolf, J. P., The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method for elastodynamics, Comput. Methods Appl. Mech. Engrg., 147, 3-4, 329-355 (1997) · Zbl 0897.73069
[51] Deeks, A. J.; Wolf, J. P., Semi-analytical solution of Laplace’s equation in non-equilibrating unbounded problems, Comput. Struct., 81, 15, 1525-1537 (2003)
[52] Chiong, I.; Ooi, E. T.; Song, C.; Tin-Loi, F., Scaled boundary polygons with application to fracture analysis of functionally graded materials, Internat. J. Numer. Methods Engrg., 98, 8, 562-589 (2014) · Zbl 1352.74020
[53] Sudret, B., Polynomial chaos expansions and stochastic finite element methods, (Kok-Kwang Phoon, J. C., Risk and Reliability in Geotechnical Engineering (2015), CRC Press), 265-300
[54] Sudret, B., Global sensitivity analysis using polynomial chaos expansions, Reliab. Eng. Syst. Saf., 93, 7, 964-979 (2008)
[55] Ooi, E. T.; Song, C.; Tin-Loi, F.; Yang, Z., Polygon scaled boundary finite elements for crack propagation modelling, Internat. J. Numer. Methods Engrg., 91, 3, 319-342 (2012) · Zbl 1246.74062
[56] Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S., Global Sensitivity Analysis: The Primer (2008), John Wiley & Sons · Zbl 1161.00304
[57] Vinodh, S.; Ravikumar, R., Application of probabilistic finite element analysis for crane hook design, J. Eng. Des. Technol. (2012)
[58] Talischi, C.; Paulino, G. H.; Pereira, A.; Menezes, I. F., PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab, Struct. Multidiscip. Optim., 45, 3, 309-328 (2012) · Zbl 1274.74401
[59] Floater, M.; Gillette, A.; Sukumar, N., Gradient bounds for Wachspress coordinates on polytopes, SIAM J. Numer. Anal., 52, 1, 515-532 (2014) · Zbl 1292.65006
[60] Sukumar, N.; Malsch, E., Recent advances in the construction of polygonal finite element interpolants, Arch. Comput. Methods Eng., 13, 1, 129 (2006) · Zbl 1101.65108
[61] Surendran, M.; Pramod, A.; Natarajan, S., Evaluation of fracture parameters by coupling the edge-based smoothed finite element method and the scaled boundary finite element method, J. Appl. Comput. Mech., 5, Special Issue: Computational Methods for Material Failure, 540-551 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.