×

On effective material parameters of thin perforated shells under static loading. (English) Zbl 1442.74120

Summary: One of the defining properties of thin shell problems is that the solution can be viewed as a linear combination of local features, each with its own characteristic thickness-dependent length scale. For perforated shells it is thus possible that for the given dimensionless thickness, the local features dominate, and the problem of deriving effective material parameters becomes ill-posed. In the general case, one has to account for many different aspects of the problem that directly affect the effective material parameters. Through a computational study we derive a conjecture for the admissible thickness-ranges. The effective material parameters are derived with a minimisation process over a set of feasible instances. The efficacy of the conjecture and the minimisation process is demonstrated with an extensive set of numerical experiments.

MSC:

74K25 Shells
74Q05 Homogenization in equilibrium problems of solid mechanics

Software:

MUMPS
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Martikka, H.; Taitokari, E., Design of perforated shell dryings drums, Mech. Eng. Res. (2012)
[2] Kalamkarov, A. L.; Andrianov, I. V.; Weichert, D., Asymptotic analysis of perforated shallow shells, Internat. J. Engrg. Sci., 53, 1-18 (2012) · Zbl 1423.74574
[3] Citarella, R. G.; Perumal, L., A brief review on polygonal/polyhedral finite element methods, Math. Probl. Eng. (2018) · Zbl 1427.65375
[4] Qian, D.; Zhou, X.; Daxini, S. D.; Prajapati, J. M., A review on recent contribution of meshfree methods to structure and fracture mechanics applications, Sci. World J. (2014)
[5] Anand, A.; Ovall, J. S.; Reynolds, S.; Weißer, S., Trefftz finite elements on curvilinear polygons (2019), arXiv e-prints arXiv:1906.09015 · Zbl 1440.65173
[6] Weißer, S., Arbitrary order Trefftz-like basis functions on polygonal meshes and realization in BEM-based FEM, Comput. Math. Appl., 67, 7, 1390-1406 (2014) · Zbl 1350.65131
[7] Beirão da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, L. D.; Russo, A., Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23, 1, 199-214 (2013) · Zbl 1416.65433
[8] Hornung, P.; Velcić, I., Derivation of a homogenized von-Kármán shell theory from 3D elasticity, Ann. Inst. H. Poincare (C) Non Linear Anal., 32, 5, 1039-1070 (2015) · Zbl 1329.74178
[9] Bensoussan, A.; Lions, J.-L.; Papanicolaou, G.; Caughey, T. K., Asymptotic Analysis of Periodic Structures (1979), AMS Chelsea Publishing
[10] Griso, G.; Hauck, M.; Orlik, J., Asymptotic Analysis for Periodic Perforated ShellsTechnical Report hal-02285421 (2019)
[11] Cioranescu, D.; Damlamian, A.; Donato, P.; Griso, G.; Zaki, R., The periodic unfolding method in domains with holes, SIAM J. Math. Anal., 44, 2, 718-760 (2012) · Zbl 1250.49017
[12] Forskitt, M.; Moon, J. R.; Brook, P. A., Elastic properties of plates perforated by elliptical holes, Appl. Math. Model. (1991) · Zbl 0833.73018
[13] Burgemeister, K. A.; Hansen, C. H., Calculating resonance frequencies of perforated panels, J. Sound Vib. (1996)
[14] Jhung, M. J.; Jo, J. C., Equivalent material properties of perforated plate with triangular or square penetration pattern for dynamic analysis, Nucl. Eng. Technol. (2006)
[15] Jhung, M.; Yu, S., Study on modal characteristics of perforated shell using effective Young’s modulus, Nucl. Eng. Des. (2011)
[16] Jhung, M. J.; Jeong, K. H., Free vibration analysis of perforated plate with square penetration pattern using equivalent material properties, Nucl. Eng. Technol. (2015)
[17] Free Vibration Analysis of Perforated Cylindrical Shell Submerged in FluidTechnical Report, KINS/RR-493 (2007)
[18] Pitkäranta, J.; Matache, A.-M.; Schwab, C., Fourier mode analysis of layers in shallow shell deformations., Comput. Methods Appl. Mech. Engrg., 190, 2943-2975 (2001) · Zbl 0983.74039
[19] Hakula, H.; Leino, Y.; Pitkäranta, J., Scale resolution, locking, and high-order finite element modelling of shells, Comput. Methods Appl. Mech. Engrg., 133, 157-182 (1996) · Zbl 0918.73111
[20] Szabo, B.; Babuska, I., Finite Element Analysis (1991), Wiley · Zbl 0792.73003
[21] Solin, P.; Segeth, K.; Dolezel, I., Higher Order Finite Element Methods (2003), Chapman and Hall/CRC
[22] Amestoy, P. R.; Duff, I. S.; L’Excellent, J.-Y., Multifrontal parallel distributed symmetric and unsymmetric solvers, Comput. Methods Appl. Mech. Engrg., 184, 501-520 (2000) · Zbl 0956.65017
[23] Amestoy, P. R.; Duff, I. S.; Koster, J.; L’Excellent, J.-Y., A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23, 15-41 (2001) · Zbl 0992.65018
[24] Amestoy, P. R.; Guermouche, A.; L’Excellent, J.-Y.; Pralet, S., Hybrid scheduling for the parallel solution of linear systems, Parallel Comput., 32, 136-156 (2006)
[25] Pitkäranta, J.; Sanchez-Palencia, E., On the asymptotic behaviour of sensitive shells with small thickness, C. R. Acad. Sci. IIB, 325, 3, 127-134 (1997) · Zbl 0886.73031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.