×

From analytical mechanics problems to rewriting theory through M. Janet’s work. (English) Zbl 1446.13022

Iohara, Kenji (ed.) et al., Two algebraic byways from differential equations: Gröbner bases and quivers. Cham: Springer. Algorithms Comput. Math. 28, 3-74 (2020).
Summary: This chapter is devoted to a survey of the historical background of Gröbner bases for \(D\)-modules and linear rewriting theory largely developed in algebra throughout the twentieth century and to present deep relationships between them. Completion methods are the main streams for these computational theories. In the theory of Gröbner bases, they were motivated by algorithmic problems in elimination theory such as computations in quotient polynomial rings modulo an ideal, manipulating algebraic equations, and computing Hilbert series. In rewriting theory, they were motivated by computation of normal forms and linear bases for algebras and computational problems in homological algebra.
For the entire collection see [Zbl 1444.14002].

MSC:

13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)
13-03 History of commutative algebra
01A60 History of mathematics in the 20th century
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] F. Baader, T. Nipkow, Term Rewriting and All That (Cambridge University Press, Cambridge, 1998). · Zbl 0948.68098
[2] T. Bächler, V. Gerdt, M. Lange-Hegermann, D. Robertz, Algorithmic Thomas decomposition of algebraic and differential systems. J. Symb. Comput. 47(10), 1233-1266 (2012). · Zbl 1315.35013 · doi:10.1016/j.jsc.2011.12.043
[3] T. Becker, V. Weispfenning, Gröbner Bases, Graduate Texts in Mathematics, vol. 141 (Springer, New York, 1993). A computational approach to commutative algebra, In cooperation with Heinz Kredel. · Zbl 0772.13010 · doi:10.1007/978-1-4612-0913-3_2
[4] G.M. Bergman, The diamond lemma for ring theory. Adv. Math. 29(2), 178-218 (1978). · Zbl 0326.16019 · doi:10.1016/0001-8708(78)90010-5
[5] L.A. Bokut, Imbeddings into simple associative algebras. Algebra i Logika 15(2), 117-142, 245 (1976). · Zbl 0349.16007
[6] R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmidt, P.A. Griffiths, Exterior Differential Systems, Mathematical Sciences Research Institute Publications, vol. 18 (Springer, New York, 1991). · Zbl 0726.58002
[7] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal). Ph.D. thesis, University of Innsbruck, Austria (1965). · Zbl 1245.13020
[8] B. Buchberger, Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems. Aequationes Math. 4, 374-383 (1970). · Zbl 0212.06401 · doi:10.1007/BF01844169
[9] B. Buchberger, History and basic features of the critical-pair/completion procedure, in: Rewriting techniques and applications (Dijon, 1985). J. Symb. Comput. 3(1-2), 3-38 (1987). · Zbl 0645.68094
[10] B. Buchberger, An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. Translated from the 1965 German original by Michael P. Abramson. J. Symb. Comput. 41(3-4), 475-511 (2006). · Zbl 1158.01307
[11] É. Cartan, Sur certaines expressions différentielles et le problème de Pfaff. Ann. Sci. École Norm. Supér. 3(16), 239-332 (1899). · JFM 30.0313.04 · doi:10.24033/asens.467
[12] É. Cartan, Sur l’intégration des systèmes d’équations aux différentielles totales. Ann. Sci. École Norm. Supér. 3(18), 241-311 (1901). · JFM 32.0351.04
[13] É. Cartan, Sur la structure des groupes infinis de transformations. Ann. Sci. École Norm. Supér. 3(21), 153-206 (1904). · JFM 35.0176.04 · doi:10.24033/asens.538
[14] É. Cartan, Les systèmes différentiels extérieurs et leurs applications géométriques. Actualités Sci. Ind., no. 994. Hermann et Cie., Paris (1945). · Zbl 0063.00734
[15] G. Darboux, Sur le problème de Pfaff. Bull. Sci. Math. et Astronom. 6(14-36), 49-68 (1882). · JFM 14.0294.01
[16] M. Dehn, Über die Topologie des dreidimensionalen Raumes. Math. Ann. 69(1), 137-168 (1910). · JFM 41.0543.01
[17] L.E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with \(n\) distinct prime factors. Am. J. Math. 35(4), 413-422 (1913). · JFM 44.0220.02
[18] D. Eisenbud, Commutative Algebra. With a View Toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150 (Springer, New York, 1995). · Zbl 0819.13001 · doi:10.1007/978-1-4612-5350-1
[19] G.A. Evans, Noncommutative Involutive Bases. Ph.D. thesis, University of Wales, Bangor (2006).
[20] J.-C. Faugère, A new efficient algorithm for computing Gröbner bases \((F_4)\). In: Effective methods in algebraic geometry (Saint-Malo, 1998). J. Pure Appl. Algebra 139(1-3), 61-88 (1999). · Zbl 0930.68174
[21] J.-C. Faugère, A new efficient algorithm for computing Gröbner bases without reduction to zero \((F_5)\), in Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation (ACM, New York, 2002), pp. 75-83. · Zbl 1072.68664
[22] A.R. Forsyth, Theory of Differential Equations, Part I. Exact Equations and Pfaff’s Problem (Cambridge University Press, Cambridge, 1890). · JFM 22.0347.02
[23] G. Frobenius, Ueber das Pfaffsche problem. J. Reine Angew. Math. 82, 230-315 (1877). · JFM 09.0249.03
[24] A. Galligo, Some algorithmic questions on ideals of differential operators, EUROCAL ’85, vol. 2 (Linz, 1985), Lecture Notes in Computer Science, vol. 204 (Springer, Berlin, 1985), pp. 413-421. · Zbl 0634.16001 · doi:10.1007/3-540-15984-3_301
[25] V.P. Gerdt, Gröbner bases and involutive methods for algebraic and differential equations. Algorithms and software for symbolic analysis of nonlinear systems. Math. Comput. Model. 25(8-9), 75-90 (1997). · Zbl 0904.13014 · doi:10.1016/S0895-7177(97)00060-5
[26] V.P. Gerdt, Involutive algorithms for computing Gröbner bases, Computational Commutative and Non-commutative Algebraic Geometry, NATO Science Series, III: Computer and Systems Sciences, vol. 196 (IOS, Amsterdam, 2005), pp. 199-225. · Zbl 1104.13012
[27] V.P. Gerdt, Y.A. Blinkov, Involutive bases of polynomial ideals. Simplification of systems of algebraic and differential equations with applications. Math. Comput. Simul. 45(5-6), 519-541 (1998). · Zbl 1017.13500 · doi:10.1016/S0378-4754(97)00127-4
[28] V.P. Gerdt, Y.A. Blinkov, Minimal involutive bases. Simplification of systems of algebraic and differential equations with applications. Math. Comput. Simul. 45(5-6), 543-560 (1998). · Zbl 1017.13501 · doi:10.1016/S0378-4754(97)00128-6
[29] H.E. Grassmann, Die lineale Ausdehnungslehre ein neuer Zweig der Mathematik (Verlag von Otto Wigand, Leipzig, 1844).
[30] H. Grauert, Über die Deformation isolierter Singularitäten analytischer Mengen. Invent. Math. 15, 171-198 (1972). · Zbl 0237.32011
[31] P.A. Griffiths, Exterior DifferentialSystems and the Calculus of Variations, Progress in Mathematics, vol. 25 (Birkhäuser, Boston, 1983). · Zbl 0512.49003
[32] W. Gröbner, Über das macaulaysche inverse system und dessen bedeutung für die theorie der linearen differentialgleichungen mit konstanten koeffizienten. Abh. Math. Sem. Univ. Hamburg 12(1), 127-132 (1937). · Zbl 0018.30802 · doi:10.1007/BF02948939
[33] W. Gröbner, Moderne algebraische Geometrie. Die idealtheoretischen Grundlagen (Springer, Wien und Innsbruck, 1949). · Zbl 0033.12706
[34] V.W. Guillemin, S. Sternberg, An algebraic model of transitive differential geometry. Bull. Am. Math. Soc. 70, 16-47 (1964). · Zbl 0121.38801 · doi:10.1090/S0002-9904-1964-11019-3
[35] Y. Guiraud, E. Hoffbeck, P. Malbos, Convergent presentations and polygraphic resolutions of associative algebras. Math. Z. 293(1-2), 113-119 (2019). · Zbl 1423.16008 · doi:10.1007/s00209-018-2185-z
[36] Y. Guiraud, P. Malbos, Higher-dimensional normalisation strategies for acyclicity. Adv. Math. 231(3-4), 2294-2351 (2012). · Zbl 1266.18008 · doi:10.1016/j.aim.2012.05.010
[37] Y. Guiraud, P. Malbos, Polygraphs of finite derivation type. Math. Struct. Comput. Sci. 28(2), 155-201 (2018). · Zbl 1396.18004 · doi:10.1017/S0960129516000220
[38] N.M. Günter. Über die Elimination. St. Petersburg. Sborn. Inst. Put. Soobšč. 83, 1-10 (1913). auch separat (1914), 1913, 1914. · JFM 48.1344.03
[39] N. Günther, Über die kanonische Form der Systeme kanonischer homogener Gleichungen. Samml. des Inst. der Verkehrswege 82, 22 S (1913). · JFM 44.0155.06
[40] N. Günther, Über einige Zusammenhänge zwischen den homogenen Gleichungen. Samml. des Inst. der Verkehrwege 82, 20 S (1913). · JFM 44.0156.01
[41] N.M. Gunther, Sur les modules des formes algébriques. Trudy Tbilis. Math. Inst. 9, 97-206 (1941). · Zbl 0063.01791
[42] G. Hermann, Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Math. Ann. 95(1), 736-788 (1926). · JFM 52.0127.01 · doi:10.1007/BF01206635
[43] D. Hilbert, Ueber die Theorie der algebraischen Formen. Math. Ann. 36(4), 473-534 (1890). · JFM 22.0133.01 · doi:10.1007/BF01208503
[44] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. Math. (2) 79, 109-203; ibid. \((2), 205-326 (1964)\). · Zbl 1420.14031 · doi:10.2307/1970547
[45] G. Huet, Confluent reductions: abstract properties and applications to term rewriting systems. J. Assoc. Comput. Mach. 27(4), 797-821 (1980). · Zbl 0458.68007 · doi:10.1145/322217.322230
[46] C. Jacobi, Ueber die Integration der partiellen Differentialgleichungen erster Ordnung. J. Reine Angew. Math. 2, 317-329 (1827). · ERAM 002.0075cj
[47] M. Janet, Sur les systèmes d’équations aux dérivées partielles. J. de Mathém. Pures et Appl. 8(3), 65-151 (1920). · JFM 47.0440.03
[48] M. Janet, Les caractères des modules de formes et les systèmes d’équations aux dérivées partielles. C. R. Acad. Sci., Paris 174, 432-434 (1922). · JFM 48.0542.01
[49] M. Janet, Sur les formes canoniques invariantes des systèmes algébriques et différentiels. C. R. Acad. Sci., Paris 174, 991-994 (1922). · JFM 48.0542.02
[50] M. Janet, Les modules de formes algébriques et la théorie générale des systèmes différentielles. Ann. Sci. École Norm. Supér. 3(41), 27-65 (1924). · JFM 50.0321.03 · doi:10.24033/asens.754
[51] M. Janet, Leçons sur les systèmes d’équations aux dérivées partielles. Gauthier-Villars (Cahiers Scientifiques publiés sous la direction de G. Julia, fasc. IV.), Paris (1929). · JFM 55.0276.01
[52] E. Kähler, Einführung in die Theorie der Systeme von Differentialgleichungen. (Hamburg. Math. Einzelschr. 16) Leipzig, Berlin: B. G. Teubner IV, 80 S (1934). · Zbl 0011.16103
[53] D. Knuth, P. Bendix, Simple word problems in universal algebras, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) (Pergamon, Oxford, 1970), pp. 263-297. · Zbl 0188.04902
[54] L. Kronecker, Grundzüge einer arithmetischen Theorie der algebraischen Grössen. (Festschrift zu Herrn Ernst Eduard Kummers fünfzigjährigem Doctor-Jubiläum, 10 September 1881). J. Reine Angew. Math. 92, 1-122 (1882). · JFM 14.0038.02
[55] M. Kuranishi, On E. Cartan’s prolongation theorem of exterior differential systems. Am. J. Math. 79, 1-47 (1957). · Zbl 0077.29701
[56] J.-L. Lagrange, Sur l’intégration des équations à différences partielles du premier ordre. Mém. Acad. Sci. et Belles-Lettres de Berlin (1772), pp. 353-372.
[57] J.-L. Lagrange, Méchanique Analitique. Desaint, Paris (1788).
[58] H. Lewy, An example of a smooth linear partial differential equation without solution. Ann. Math. 2(66), 155-158 (1957). · Zbl 0078.08104 · doi:10.2307/1970121
[59] F.S. Macaulay, The Algebraic Theory of Modular Systems. (University Press, Cambridge, 1916). XIV u. 112. · JFM 46.0167.01
[60] F.S. Macaulay, Some properties of enumeration in the theory of modular systems. Proc. Lond. Math. Soc. 2(26), 531-555 (1927). · JFM 53.0104.01 · doi:10.1112/plms/s2-26.1.531
[61] P. Malbos, Noncommutative linear rewriting: applications and generalizations (Gröbner Bases and Quivers, Algorithms Computation in Mathematics In Two Algebraic Byways from Differential Equations: Gröbner Bases and Quivers, Algorithms and Computation in Mathematics (Springer, Berlin, 2019), pp. 115-182.
[62] B. Malgrange, Systèmes différentiels involutifs, Panoramas et Synthèses, vol. 19 (Société Mathématique de France, Paris, 2005). · Zbl 1090.35003
[63] E.L. Mansfield, A simple criterion for involutivity. J. Lond. Math. Soc. (2) 54(2), 323-345 (1996). · Zbl 0865.35092 · doi:10.1112/jlms/54.2.323
[64] A. Markov, On the impossibility of certain algorithms in the theory of associative systems. Doklady Akad. Nauk SSSR (N.S.) 55, 583-586 (1947). · Zbl 0029.10101
[65] A. Markov, On the impossibility of certain algorithms in the theory of associative systems. II. Doklady Akad. Nauk SSSR (N.S.) 58, 353-356 (1947). · Zbl 0030.19401
[66] M. Newman, On theories with a combinatorial definition of “equivalence”. Ann. Math. (2) 43(2), 223-243 (1942). · Zbl 0060.12501 · doi:10.2307/1968867
[67] M. Nivat. Congruences parfaites et quasi-parfaites. In Séminaire P. Dubreil, 25e année (1971/72), Algèbre, Fasc. 1, Exp. No. 7, page 9. Secrétariat Mathématique, Paris (1973). · Zbl 0338.02018
[68] E. Noether, Idealtheorie in ringbereichen. Math. Ann. 83, 24-66 (1921). · JFM 48.0121.03 · doi:10.1007/BF01464225
[69] E. Noether, Eliminationstheorie und allgemeine Idealtheorie. Math. Ann. 90(3-4), 229-261 (1923). · JFM 49.0076.04 · doi:10.1007/BF01455443
[70] E. Noether, Eliminationstheorie und Idealtheorie. Jahresber. Dtsch. Math.-Ver. 33, 116-120 (1924). · JFM 50.0071.02
[71] J.F. Pfaff, Allgemeine Methode, partielle Differentialgleichungen zu integrieren (1815). Aus dem Lateinischen übersetzt und herausgegeben von G. Kowalewski. (Ostwalds Klassiker No. 129, 1902).
[72] J.-F. Pommaret, Systems of partial differential equations and Lie pseudogroups. With a preface by André Lichnerowicz, Mathematics and its Applications, vol. 14 (Gordon & Breach Science Publishers, New York, 1978). · Zbl 0401.58006
[73] E.L. Post, Recursive unsolvability of a problem of Thue. J. Symb. Logic 12, 1-11 (1947). · Zbl 1263.03030 · doi:10.2307/2267170
[74] C. Riquier, De l’existence des intégrales dans un système différentiel quelconque. Ann. Sci. École Norm. Supér. 3(10), 65-86 (1893). · JFM 25.0590.03 · doi:10.24033/asens.383
[75] C. Riquier, Les systèmes d’équations aux dérivées partielles (Gauthier-Villars, Paris, 1910). · JFM 40.0411.01
[76] C. Riquier, La méthode des fonctions majorantes et les systèmes d’équations aux dérivées partielles. (Mémorial des sciences mathématiques, fasc. 32), Gauthier-Villars, Paris (1928). · JFM 54.0489.02
[77] J.F. Ritt, Differential Algebra, vol. XXXIII (American Mathematical Society Colloquium Publications, New York, 1950). · Zbl 0037.18402
[78] D. Robertz, Formal Algorithmic Elimination for PDEs, Lecture Notes in Mathematics, vol. 2121 (Springer, Cham, 2014). · Zbl 1339.35007 · doi:10.1007/978-3-319-11445-3
[79] M. Saito, B. Sturmfels, N. Takayama, Gröbner deformations of hypergeometric differential equations, Algorithms and Computation in Mathematics, vol. 6 (Springer, Berlin, 2000). · Zbl 0946.13021
[80] F.-O. Schreyer, Die Berechnung von Syzygien mit dem verallgemeinerten Weierstrass’schen Divisionssatz. Ph.D. thesis, Universität Hamburg, Germany (1980).
[81] F. Schwarz, An algorithm for determining the size of symmetry groups. Computing 49(2), 95-115 (1992). · Zbl 0759.68042 · doi:10.1007/BF02238743
[82] W.M. Seiler, Involution. The formal theory of differential equations and its applications in computer algebra, Algorithms and Computation in Mathematics, vol. 24 (Springer, Berlin, 2010). · Zbl 1205.35003
[83] A.I. Shirshov, Some algorithmic problems for Lie algebras. Sibirsk. Mat. Zh. 3, 292-296 (1962). · Zbl 0104.26004
[84] I.M. Singer, S. Sternberg, The infinite groups of Lie and Cartan. I. The transitive groups. J. Analyse Math. 15, 1-114 (1965). · Zbl 0277.58008
[85] J.J. Sylvester, A method of determining by mere inspection the derivatives from two equations of any degree. Lond. Edinb. Dublin Phil. Mag. J. Sci. 16, 132-135 (1840).
[86] J.M. Thomas, Differential Systems, vol. XXI (American Mathematical Society Colloquium Publications, New York, 1937). · Zbl 0016.30404
[87] A. Thue, Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln. Kristiania Vidensk. Selsk, Skr. 10, 493-524 (1914). · JFM 45.0333.19
[88] A. Tresse, Sur les invariants différentie1s des groupes continus de transformations. Acta Math. 18, 1-88 (1894). · JFM 25.0641.01 · doi:10.1007/BF02418270
[89] B. van der Waerden, Moderne Algebra. II. Teil. Unter Benutzung von Vorlesungen von E. Artin und E. Noether. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Bd. 34. Julius (Springer, Berlin, 1931). · Zbl 0002.00804
[90] B. L. van der Waerden, Moderne Algebra. Bd. I. Unter Benutzung von Vorlesungen von E. Artin und E. Noether. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Bd. 23 (Springer, Berlin, 1930). · JFM 56.0138.01
[91] S. von Kowalevsky, Zur Theorie der partiellen Differentialgleichungen. J. Reine Angew. Math. 80, 1-32 (1875). · JFM 07.0201.01
[92] E. von Weber, Vorlesungen über das Pfaff’sche Problem und die Theorie der partiellen Differentialgleichungen erster Ordnung (B. G. Teubner, Leipzig, 1900). · JFM 31.0364.02
[93] K. Weierstrass, Abhandlungen aus der Functionenlehre (Springer, Berlin, 1886). · JFM 18.0327.01
[94] Wikipedia contributors. Seki Takakazu — Wikipedia, the free encyclopedia.
[95] K.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.