×

A theoretical study on effect of the initial redox state of cytochrome \(b_{559}\) on maximal chlorophyll fluorescence level (\(F_M\)): implications for photoinhibition of photosystem II. (English) Zbl 1442.92005

Summary: In this work, we extended the reversible radical pair model which describes energy utilization and electron transfer up to the first quinone electron acceptor \((Q_A)\) in photosystem II (PSII), by redox reactions involving cytochrome (cyt) \(b_{559}\). In the model, cyt \(b_{559}\) accepts electrons from the reduced primary electron acceptor in PSII, pheophytin, and donates electrons to the oxidized primary electron donor in PSII \((P680^+)\). Theoretical simulations of chlorophyll fluorescence rise based on the model show that the maximal fluorescence, \(F_M\), increases with an increasing amount of initially reduced cyt \(b_{559}\). In this work we applied, the first to our knowledge, metabolic control analysis (MCA) to a model of reactions in PSII. The MCA was used to determine to what extent the reactions occurring in the model control the \(F_M\) level and how this control depends on the initial redox state of cyt \(b_{559}\). The simulations also revealed that increasing the amount of initially reduced cyt \(b_{559}\) could protect PSII against photoinhibition. Also experimental data, which might be used to validate our theory, are presented and discussed.

MSC:

92C05 Biophysics
92C40 Biochemistry, molecular biology

Software:

GEPASI
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, J. M.; Park, Y.-I.; Chow, W. S., Unifying model for the photoinactivation of photosystem II in vivo under steady-state photosynthesis, Photosynth. Res., 56, 1-13 (1998)
[2] Arnon, D. I.; Tang, G. M.-S., Cytochrome b-559 and proton conductance in oxygenic photosynthesis, Proc. Natl Acad. Sci. USA, 85, 9424-9528 (1988)
[3] Baake, E.; Schlöder, J. P., Modelling the fast fluorescence rise of photosynthesis, Bull. Math. Biol., 54, 999-1021 (1992) · Zbl 0757.92006
[4] Barber, J.; De Las Rivas, J., A functional model for the role of cytochrome b_559 in the protection against donor and acceptor side photoinhibition, Proc. Natl Acad. Sci. USA, 90, 10942-10946 (1993)
[5] Blubaugh, D. J.; Atamian, M.; Babcock, G. T.; Golbeck, J. H.; Cheniae, G. M., Photoinhibition of hydoxylamine-extracted photosystem II membranesidentification of the sites of photodamage, Biochemistry, 30, 7586-7597 (1991)
[6] Booth, P. J.; Crystall, B.; Giorgi, L. B.; Barber, J.; Klug, D. R.; Porter, G., Thermodynamic properties of D1/D2/cytochrome b-559 reaction centres investigated by time-resolved fluorescence measurements, Biochim. Biophys. Acta, 1016, 141-152 (1990)
[7] Breton, J., The emission of chlorophyll in vivo. Antenna fluorescence or ultrafast luminescence from reaction centre pigments, FEBS, 159, 1-5 (1983)
[8] Brettel, K.; Schlodder, E.; Witt, H. T., Nanosecond reduction kinetics of photooxidized chlorophyll-a_II P-680. in single fleshes as a probe for the electron pathway, H^+-release and charge accumulation in the O_2-evolving complex, Biochim. Biophys. Acta, 766, 403-415 (1984)
[9] Bruce, D.; Samson, G.; Carpenter, C., The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680^+ in photosystem II enriched membranes at low pH, Biochemistry, 36, 749-755 (1997)
[10] Bukhov, N. G.; Govindachary, S.; Egorova, E. A.; Joly, D.; Carpentier, R., N,N,N′,N′-tetramethyl-p-phenylenediamine initiates the appearance of a well-resolved I peak in the kinetics of chlorophyll fluorescence rise in isolated thylakoids, Biochim. Biophys. Acta, 1607, 91-96 (2003)
[11] Buser, C. A.; Diner, B. A.; Brudvig, G. W., Photooxidation of cytochrome b_559 in oxygen evolving photosystem II, Biochemistry, 31, 11449-11459 (1992)
[12] Cramer, W. A.; Tae, G. S.; Furbacher, P. N.; Böttger, M., The enigmatic cytochrome b-559 of oxygenic photosynthesis, Physiol. Plant, 88, 705-711 (1993)
[13] Dau, H., Molecular mechanism and quantitative models of variable photosystem II fluorescence, Photochem. Photobiol., 60, 1-23 (1994)
[14] Dau, H.; Andrews, J. C.; Roelofs, T. A.; Latimer, M. J.; Liang, W.; Yachandra, V. K.; Sauer, K.; Klein, MP., Structural consequences of ammonia binding to the manganese centre of the photosynthetic oxygen evolving complexan X-ray absorption spectroscopy study of isotropic and oriented photosystem II particles, Biochemistry, 34, 5274-5287 (1995)
[15] Duysens, L.N.M., Sweers, H.E., 1963. Mechanism of two photochemical reactions in algae as studied by means of fluorescence. In: Japanese Society of Plant Physiologists (Ed.), Studies on Microalgae and Photosynthetic Bacteria. University of Tokyo Press, Tokyo, pp. 353-372.
[16] Falkowski, P. G.; Fujita, Y.; Ley, A.; Muzerall, D., Evidence for cyclic electron flow around photosystem II in Chlorella pyrenoidosa, Plant Physiol., 81, 310-312 (1986)
[17] Fell, D. A., Metabolic control analysisa survey of its theoretical and experimental development, Biochem. J., 286, 313-330 (1992)
[18] Fridlyand, L. E.; Backhausen, J. E.; Scheibe, R., Flux control of the malate valve in leaf cells, Arch. Biochem. Biophys., 349, 290-298 (1998)
[19] Giersch, C., Mathematical modelling of metabolism, Curr. Opin. Plant Biol., 3, 249-253 (2000)
[20] Sixty-three years since Kautskychlorophyll a fluorescence, Aust. J. Plant Physiol., 22, 131-160 (1995)
[21] Havaux, M., Probing electron transport through and around photosystem II in vivo by the combined use of photoacoustic spectroscopy and chlorophyll fluorometry, Isr. J. Chem., 38, 247-256 (1998)
[22] Haveman, J.; Mathis, P., Flash-induced absorption changes of the primary donor of photosystem II at 820nm in chloroplasts inhibited by low pH or tris-treatment, Biochim. Biophys. Acta, 440, 346-355 (1976)
[23] Heber, U.; Boardman, N. K.; Anderson, J. M., Cytochrome b-563 redox changes in intact CO_2-fixing spinach chloroplasts and in developing pea chloroplasts, Biochim. Biophys. Acta, 423, 275-292 (1976)
[24] Heber, U.; Kirk, M. R.; Boardman, N. K., Photoreactions of cytochrome b-559 and cyclic electron flow in photosystem II of intact chloroplasts, Biochim. Biophys. Acta, 546, 292-306 (1979)
[25] Heredia, P.; De Las Rivas, J., Fluorescence induction of Photosystem II membranes shows the steps till reduction and protonation of the quinone pool, J. Plant Physiol., 160, 1499-1506 (2003)
[26] Hiller, R. G.; Anderson, J. M.; Boardman, N. K., Photooxidation of cytochrome b_-559 in leaves and chloroplasts at room temperature, Biochim. Biophys. Acta, 245, 439-452 (1971)
[27] Hsu, B.-D.; Lee, J.-Y., Fluorescence quenching by plastoquinone in an oxygen evolving photosystem-II-enriched preparation, J. Photochem. Photobiol. BBiol, 30, 57-61 (1995)
[28] Hsu, B.-D.; Leu, K.-L., A possible origin of the middle phase of polyphasic chlorophyll fluorescence transient, Funct. Plant Biol., 30, 571-576 (2003)
[29] Kitajama, M.; Butler, W. L., Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone, Biochim. Biophys. Acta, 376, 105-115 (1975)
[30] Koblížek, M.; Kaftan, D.; Nedbal, L., On the relationship between the non-photochemical quenching of the chlorophyll fluorescence and the photosystem II light harvesting efficiency. A repetitive flash fluorescence induction study, Photosynth. Res., 68, 141-152 (2001)
[31] Kramer, D. M.; DiMarco, G.; Loreto, F., Contribution of plastoquinone quenching to saturation pulse-induced rise of chlorophyll fluorescence in leaves, (Mathis, P., PhotosynthesisFrom Light to Biosphere, vol. I (1995), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 147-150
[32] Krause, G. H.; Weis, E., Chlorophyll fluorescence and photosynthesisthe basis, Annu. Rev. Plant Physiol. Plant Mol. Biol., 42, 313-349 (1991)
[33] Kruk, J.; Strzalka, K., Redox changes of cytochrome b_559 in the presence of plastoquinones, J. Biol. Chem., 276, 86-91 (2001)
[34] Kurreck, J.; Schödel, R.; Renger, G., Investigation of the plastoquinone pool size and fluorescence quenching in thylakoid membranes and Photosystem II PS II. Membrane fragments, Photosynth. Res., 63, 171-182 (2000)
[35] Lavergne, J.; Trissl, H.-W., Theory of fluorescence induction of photosystem IIderivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photosynthetic units, Biophys. J., 68, 2474-2492 (1995)
[36] Lazár, D., Chlorophyll a fluorescence induction, Biochim. Biophys. Acta, 1412, 1-28 (1999)
[37] Lazár, D., Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity, J. Theor. Biol., 220, 469-503 (2003) · Zbl 1464.92020
[38] Lazár, D.; Pospíšil, P., Mathematical simulation of chlorophyll a fluorescence rise measured with 3-3′,4′-dichlorophenyl.-1,1-dimethylurea-treated barley leaves at room and high temperatures, Eur. Biophys. J., 28, 468-477 (1999)
[39] Lazár, D.; Nauš, J.; Matoušková, M.; Flašarová, M., Mathematical modeling of changes in chlorophyll fluorescence induction caused by herbicides, Pestic. Biochem. Physiol., 57, 200-210 (1997)
[40] Lazár, D.; Brokeš, M.; Nauš, J.; Dvořák, L., Mathematical modelling of 3-3′,4′-dichlorophenyl.-1,1-dimethylurea action in plant leaves, J. Theor. Biol., 191, 79-86 (1998)
[41] Leibl, W.; Breton, J.; Deprez, J.; Trissl, H.-W., Photoelectric study on the kinetics of trapping and charge stabilization in oriented PS II membranes, Photosynth. Res., 22, 257-275 (1989)
[42] Lichtenthaler, H. K., Chlorophylls and carotenoids. Pigments of photosynthesis biomembranes, Meth. Enzymol., 148, 350-382 (1987)
[43] Magnuson, A.; Rova, M.; Mamedov, F.; Fredriksson, P.-O.; Styring, S., The role of cytochrome b_559 and tyrosine_D in protection against photoinhibition during in vivo photoactivation of photosystem II, Biochim. Biophys. Acta, 1411, 180-191 (1999)
[44] McCauley, S.; Melis, A., Quantitation of plastoquinone photoreduction in spinach chloroplasts, Photosynth. Res., 8, 3-16 (1986)
[45] McNamara, V. P.; Gounaris, K., General Photosystem II complex contain only the high redox potential from of cytochrome b-559 which is tabilised by the ligation of calcium, Biochim. Biophys. Acta, 1231, 289-296 (1995)
[46] Mendes, P., GEPASIa software package for modelling the dynamics, steady states and control of biochemical and other systems, Comput. Appl. Biosci., 9, 563-571 (1993)
[47] Mendes, P., Biochemistry by numberssimulation of biochemical pathways with Gepasi 3, Trends Biochem. Sci., 22, 361-363 (1997)
[48] Messinger, J.; Renger, G., Generation, oxidation by the oxidized form of the tyrosine of polypeptide D2, and possible electronic configuration of the redox sates S_0, S_−1 and S_−2 of the water oxidase in isolated spinach thylakoids, Biochemistry, 32, 9379-9386 (1993)
[49] Meyer, B.; Schlodder, E.; Dekker, J. P.; Witt, H. T., O_2 evolution and Chl a_II^+ P-680^+. nanosecond reduction kinetics in single flashes as a function of pH, Biochim. Biophys. Acta, 974, 36-43 (1989)
[50] Mizusawa, N.; Ebina, M.; Yamashita, T., Restoration of the high potential form of cytochrome b-559 through the photoreactivation of Tris-inactivated oxygen-evolving centre, Photosynth. Res., 45, 71-77 (1995)
[51] Morgan, J. A.; Rhodes, D., Mathematical modelling of plant metabolic pathways, Metab. Eng., 4, 80-89 (2002)
[52] Nedbal, L.; Samson, G.; Whitmarsh, J., Redox state of one-electron component controls the rate of photoinhibition of photosystem II, Proc. Natl Acad. Sci. USA, 89, 7929-7933 (1992)
[53] Neubauer, C.; Schreiber, U., The polyphasic rice of chlorophyll fluorescence upon onset of strong continuous illuminationI. Saturation characteristics and partial control by the photosystem II acceptor side, Z. Naturforsch., 42c, 1246-1254 (1987)
[54] Oettmeier, W.; Soll, H. J., Competition between plastoquinone and 3-3,4-dichlorophenyl.-1,1-dimethylurea at the acceptor side of photosystem II. Biochim, Biophys. Acta, 724, 287-297 (1983)
[55] Ortega, J. M.; Hervás, M.; Losada, M., Redox and acid-base characterization of cytochtome b-559 in photosystem II particles, Eur. J. Biochem., 171, 449-455 (1988)
[56] Park, Y. I.; Chow, W. S.; Anderson, J. M., Light inactivation of functional photosystem II in leaves of peas grown in moderate light depends on photon exposure, Planta, 196, 401-411 (1995)
[57] Park, Y. I.; Anderson, J. M.; Chow, W. S., Photoinactivation of functional photosystem II and D1-protein synthesis in vivo are independent of the modulation of the photosynthetic apparatus by grown irradiance, Planta, 198, 300-309 (1996)
[58] Park, Y. I.; Chow, W. S.; Anderson, J. M., Antenna size dependency of photoinactivation of photosystem II in light-acclimated pea leaves, Plant Physiol., 115, 151-157 (1997)
[59] Poolman, M. G.; Fell, D. A.; Thomas, S., Modelling photosynthesis and its control, J. Exp. Bot., 51, 319-328 (2000)
[60] Pospíšil, P., Mechanisms of non-photochemical chlorophyll fluorescence quenching in higher plants, Photosynthetica, 34, 343-355 (1997)
[61] Pospíšil, P.; Dau, H., Chlorophyll fluorescence transients of Photosystem II membrane particles as a tool for studying photosynthetic oxygen evolution, Photosynth. Res., 65, 41-52 (2000)
[62] Pospíšil, P.; Dau, H., Valinomycin sensitivity proves that light-induced thylakoid volatges result in millisecond phase of chlorophyll fluorescence transients, Biochim. Biophys. Acta, 1554, 94-100 (2002)
[63] Poulson, M.; Samson, G.; Whitmarsh, J., Evidence that cyochrome b_559 protects photosystem II against photoinhibition, Biochemistry, 34, 10932-10938 (1995)
[64] Prasil, O.; Kolber, Z.; Berry, J. A.; Falkowski, P. G., Cyclic electron flow around photosystem II in vivo, Photosynth. Res., 48, 395-410 (1996)
[65] Rabinovich, E.; Govindjee, Photosynthesis (1969), Interscience Publishers, Wiley: Interscience Publishers, Wiley New York
[66] Razeghifard, M. R.; Klughammer, C.; Pace, R. J., Electron paramegnetic resonance kinetic studies of the S states in spinach thylakoids, Biochemistry, 36, 86-92 (1997)
[67] Renger, G.; Wolff, C., The existence of a high photochemical turnover rate at the reaction centers of system II in Tris-washed chloroplasts, Biochim. Biophys. Acta, 423, 610-614 (1976)
[68] Roelofs, T. A.; Lee, C.-H.; Holzwarth, A. R., Global target analysis of picosecond chlorophyll fluorescence kinetics from pea chloroplasts. A new approach to the characterization of the primary processes in photosystem II α- and β-units, Biophys. J., 61, 1147-1163 (1992)
[69] Satoh, K.; Hansson, Ö.; Mathis, P., Charge recombination between stabilized P-680^+ and reduced cytochrome b-559 in quinone-reconstituted PSII reaction centre, Biochim. Biophys. Acta, 1016, 121-126 (1990)
[70] Schansker, G.; Srivastava, A.; Govindjee; Strasser, R. J., Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise, OJIP in pea leaves, Funct. Plant Biol., 30, 785-796 (2003)
[71] Schatz, G. H.; Brock, H.; Holzwarth, A. R., Kinetic and energetic model for the primary processes in photosystem II, Biophys. J., 54, 397-405 (1988)
[72] Schreiber, U.; Krieger, A., Two fundamentally different types of variable chlorophyll fluorescence in vivo, FEBS Lett., 397, 131-135 (1996)
[73] Schreiber, U.; Neubauer, C.; Klughammer, C., Devices and methods for room-temperature fluorescence analysis, Philos. Trans. R. Soc. Lond. B, 323, 241-251 (1989)
[74] Shigematsu, Y.; Satoh, F.; Yamada, Y., A binding model for phenylurea herbicides based on analysis of a Thr 264 mutation in D-1 protein of tobacco, Pestic. Biochem. Physiol., 35, 33-41 (1989)
[75] Shinohara, K.; Ono, T.-A.; Inoue, Y., Biochemical changes on photoactivation of oxygen-evolving enzyme in dark-grown pine cotyledons, (Murata, A., Research in Photosynthesis, vol. II (1992), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 401-404
[76] Shuvalov, V. A., Composition and function of cytochrome b559 in reaction centers of photosystem II of green plants, J. Bioenerg. Biomembr., 26, 619-626 (1994)
[77] Sinclair, J.; Park, Y. I.; Chow, W. S.; Anderson, J. M., Target theory and the photoinactivation of photosystem II, Photosynth. Res., 50, 33-40 (1996)
[78] Stewart, D. H.; Brudvig, G. W., Cytochrome b_559 of photosystem II, Biochim. Biophys. Acta, 1367, 63-87 (1998)
[79] Stirbet, A.; Govindjee; Strasser, B. J.; Strasser, R. J., Chlorophyll a fluorescence induction in higher plantsmodelling and numerical simulation, J. Theor. Biol., 193, 131-151 (1998)
[80] Strasser, R. J.; Srivastava, A.; Govindjee, Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria, Photochem. Photobiol., 61, 32-42 (1995)
[81] Styring, S.; Virgin, I.; Ehrenberg, A.; Andersson, B., Strong light photoinhibition of electron transport in photosystem II. Impairment of the function of the first quinone acceptor, Q_A, Biochim. Biophys. Acta, 1015, 269-278 (1990)
[82] Thompson, L. K.; Brudvig, G. W., Cytochrome b-559 may function to protect photosystem II from photoinhibitin, Biochemistry, 27, 6653-6658 (1988)
[83] Thompson, L. K.; Miller, A.-F.; Buser, C. A.; de Paula, J. C.; Brudvig, G. W., Characterization of the multiple forms of cytochrome b_559 in photosystem II, Biochemistry, 28, 8048-8056 (1989)
[84] Tomek, P.; Lazár, D.; Ilík, P.; Nauš, J., On the intermediate steps between the O and P steps in chlorophyll a fluorescence rise measured at different intensities of exciting light, Aust. J. Plant Physiol., 28, 1151-1160 (2001)
[85] Trebst, A., The three-dimensional structure of the herbicide binding niche on the reaction centre polypeptides of photosystem II, Z. Naturforsch., 42c, 742-750 (1987)
[86] Trebst, A.; Draber, W., Inhibitors of photosystem II and the topology of the herbicide and Q_B binding polypeptide in the thylakoid membrane, Photosynth. Res., 10, 381-392 (1986)
[87] Trissl, H.-W.; Lavergne, J., Fluorescence induction from photosystem IIanalytical equations for the yields of photochemistry and fluorescence derived from analysis of a model including exciton-radical pair equilibrium and restricted energy transfer between photosynthetic units, Aust. J. Plant Physiol., 22, 183-193 (1995)
[88] Trissl, H.-W.; Gao, Y.; Wulf, K., Theoretical fluorescence induction curves derived from coupled differential equations describing the primary photochemistry of photosystem II by an exciton-radical pair equilibrium, Biophys. J., 64, 974-988 (1993)
[89] van der Bolt, F.; Vermaas, W., Photoinactivation of photosystem II as studied with site-directed D2 mutants of cyanobacterium Synechocystis SP PCC-6803, Biochim. Biophys. Acta, 1098, 247-254 (1992)
[90] van Grondelle, R., Excitation energy transfer, trapping and annihilation in photosynthetic systems, Biochim. Biophys. Acta, 811, 147-195 (1985)
[91] van Mieghem, F.; Brettel, K.; Hillmann, B.; Kamlowski, A.; Rutherford, A. W.; Schlodder, E., Charge recombination reactions in photosystem II. 1. Yields, recombination pathways, and kinetics of the primary pair, Biochemistry, 34, 4798-4813 (1995)
[92] Vass, I.; Styring, S.; Hundal, T.; Koivuniemi, A.; Aro, E.-M.; Andersson, B., Reversible and irreversible intermediates during photoinhibition of photosystem IIstable reduced Q_A species promote chlorophyll triplet formation, Proc. Natl Acad. Sci. USA, 89, 1408-1412 (1992)
[93] Vavilin, D. V.; Tyystjärvi, E.; Aro, E.-M., Model for the fluorescence induction curve of photoinhibited thylakoids, Biophys. J., 75, 503-512 (1998)
[94] Vernotte, C.; Etienne, A.-L.; Briantais, L.-M., Quenching of the system II chlorophyll fluorescence by the plastoquinone pool, Biochim. Biophys. Acta, 545, 519-527 (1979)
[95] Visser, D.; Heijnen, J., The mathematics of metabolic control analysis revisited, Metab. Eng., 4, 114-123 (2002)
[96] Vredenberg, W. J.; Bulychev, A., Photoelectric effects on chlorophyll fluorescence of photosystem II in vivo. Kinetics in the absence and presence of valinomycin, Bioelectrochemistry, 60, 87-95 (2003)
[97] Whitmarsh, J.; Pakrasi, H. B., Form and function of cytochrome b-559, (Ort, D. R.; Yocum, C. F., Oxygenic PhotosynthesisThe Light Reactions (1996), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 249-264
[98] Whitmarsh, J.; Samson, G.; Poulson, M., Photoprotection in photosystem II—the role of cytochrome b559, (Baker, N.; Bower, J., Photoinhibition of Photosynthesis—From Molecular Mechanisms to the Field (1994), BIOS Scientific Publishers: BIOS Scientific Publishers Oxford), 75-93
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.