×

A review of statistics in palaeoenvironmental research. (English) Zbl 07225438

Summary: Palaeoecologists use sequences of fossils within deposits from continents and oceans all over the world in order to produce time-series of past environmental dynamics over decades to millennia or longer. Such information can place current and future environmental change into context, for example by showing how climate, environments, ecosystems and humans interacted during past events, and by enabling verification of climate models through ‘hind-casting’ of such events. Through a meta-analysis and focused literature review of currently used statistical approaches in palaeoecological research, we highlight potential pitfalls and suggest ways forward to a fuller statistical understanding of the possibilities and limitations of palaeoecological studies. Statisticians or at least statistical reasoning should be involved in order to quantify uncertainties across the full analytical pipeline of obtaining, analysing and interpreting fossil time-series and could help optimizing the analytical decisions taken at all these steps. Supplementary materials accompanying this paper appear online.

MSC:

62P12 Applications of statistics to environmental and related topics

Software:

CONISS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Armit, I.; Swindles, Gt; Becker, K.; Plunkett, G.; Blaauw, M., Rapid climate change did not cause population collapse at the end of the European Bronze Age, PNAS, 111, 17045-17049 (2014)
[2] Anderson, K.; Bradley, E.; Rassbach De Vesine, L.; Zreda, M.; Zweck, C., Forensic reasoning about paleoclimatology: creating a system that works, Advances in Cognitive Systems, 3, 221-240 (2014)
[3] Aquino-López, Marco A.; Blaauw, Maarten; Christen, J. Andrés; Sanderson, Nicole K., Bayesian Analysis of \[^{210} 210 Pb\] Dating, Journal of Agricultural, Biological and Environmental Statistics, 23, 3, 317-333 (2018) · Zbl 1426.62333
[4] Barr, Wa, Signal or noise? A null model method for evaluating the significance of turnover pulses, Paleobiology, 43, 656-666 (2017)
[5] Bennett, Kd, Confidence intervals for age estimates and deposition times in late-Quaternary sediment sequences, The Holocene, 4, 337-348 (1994)
[6] Bennett, Kd; Buck, Ce, Interpretation of lake sediment accumulation rates, The Holocene, 26, 1092-1102 (2016)
[7] Birks, Hjb; Juggins, S.; Lotter, A.; Smol, Jp, Tracking Environmental Change Using Lake Sediments Vol. 5: Data Handling and Statistical Techniques, 673 (2012), Dordrecht: Springer, Dordrecht
[8] Blaauw, M.; Christen, Ja, Radiocarbon peat chronologies and environmental change, Applied Statistics, 54, 805-816 (2005) · Zbl 1490.62392
[9] Blaauw, M., Methods and code for ’classical’ age-modelling of radiocarbon sequences, Quaternary Geochronology, 5, 512-518 (2010)
[10] Blaauw, M.; Wohlfarth, B.; Christen, Ja; Ampel, L.; Veres, D.; Hughen, Ka; Preusser, F.; Svensson, A., Were last glacial climate events simultaneous between Greenland and France? A quantitative comparison using non-tuned chronologies, Journal of Quaternary Science, 25, 387-394 (2010)
[11] Blaauw, M.; Bennett, Kd; Christen, Ja, Random walk simulations of fossil proxy data, The Holocene, 20, 645-649 (2010)
[12] Blaauw, M.; Christen, Ja, Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Analysis, 6, 457-474 (2011) · Zbl 1330.62413
[13] Blaauw, M., Out of tune: the dangers of aligning proxy archives, Quaternary Science Reviews, 36, 38-49 (2012)
[14] Blaauw, M., and Heegaard, E. (2012), “Estimation of age-depth relationships,” in Birks, H. J. B., Juggins, S., Lotter, A., Smol, J. P. (editors), “Tracking Environmental Change Using Lake Sediments Vol. 5: Data Handling and Statistical Techniques”, pp 379-413.
[15] Blaauw, M.; Mauquoy, D., Signal and variability within a Holocene peat bog - chronological uncertainties of pollen, macrofossil and fungal proxies, Review of Palaeobotany and Palynology, 186, 5-15 (2012)
[16] Blaauw, M.; Christen, Ja; Bennett, Kd; Reimer, Pj, Double the date and go for Bayes - impacts of model choice, dating density and quality on chronologies, Quaternary Science Reviews, 188, 58-66 (2018)
[17] Blois, Jl; Williams, Jw; Grimm, Ec; Jackson, St; Graham, Rw, A methodological framework for assessing and reducing temporal uncertainty in paleovegetation mapping from late-Quaternary pollen records, Quaternary Science Reviews, 30, 1926-1939 (2011)
[18] Boers, N.; Goswami, B.; Ghil, M., A complete representation of uncertainties in layer-counted paleoclimatic archives, Climate of the Past, 13, 1169-1180 (2017)
[19] Bray, Pj; Blockley, Spe; Coope, Gr; Dadswell, Lf; Elias, Sa; Lowe, Jj; Pollard, Am, Refining mutual climatic range (MCR) quantitative estimates of palaeotemperature using ubiquity analysis, Quaternary Science Reviews, 25, 1865-1876 (2006)
[20] Bronk Ramsey, C., Deposition models for chronological records, Quaternary Science Reviews, 27, 42-60 (2008)
[21] Bronk Ramsey, C., Dealing with outliers and offsets in radiocarbon dating, Radiocarbon, 51, 1023-1045 (2009)
[22] Bronk Ramsey, C.; Staff, Ra; Bryant, Cl; Brock, F.; Kitagawa, H.; Van Der Plicht, J., A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P, Science, 338, 370-374 (2012)
[23] Charman, D. J.; Beilman, D. W.; Blaauw, M.; Booth, R. K.; Brewer, S.; Chambers, F. M.; Christen, J. A.; Gallego-Sala, A.; Harrison, S. P.; Hughes, P. D. M.; Jackson, S. T.; Korhola, A.; Mauquoy, D.; Mitchell, F. J. G.; Prentice, I. C.; Van Der Linden, M.; De Vleeschouwer, F.; Yu, Z. C.; Alm, J.; Bauer, I. E.; Corish, Y. M. C.; Garneau, M.; Hohl, V.; Huang, Y.; Karofeld, E.; Le Roux, G.; Loisel, J.; Moschen, R.; Nichols, J. E.; Nieminen, T. M.; Macdonald, G. M.; Phadtare, N. R.; Rausch, N.; Sillasoo, Ü.; Swindles, G. T.; Tuittila, E.-S.; Ukonmaanaho, L.; Väliranta, M.; Van Bellen, S.; Van Geel, B.; Vitt, D. H.; Zhao, Y., Climate-related changes in peatland carbon accumulation during the last millennium, Biogeosciences, 10, 2, 929-944 (2013)
[24] Christen, Ja; Buck, Ce, Sample selection in radiocarbon dating, Applied Statistics, 47, 543-557 (1998) · Zbl 0913.62124
[25] Christen, Ja; Perez, Se, A new robust statistical model for radiocarbon data, Radiocarbon, 51, 1047-1059 (2009)
[26] Comboul, M.; Emile-Geay, J.; Evans, Mn; Mirnateghi, N.; Cobb, Km; Thompson, Dm, A probabilistic model of chronological errors in layer-counted climate proxies: applications to annually banded coral archives, Climate of the Past, 10, 825-841 (2014)
[27] Correa-Metrio, A.; Meave, Ja; Lozano-García, S.; Bush, Mb, Environmental determinism and neutrality in vegetation at millennial time scales, Journal of Vegetation Science, 25, 627-635 (2014)
[28] Debret, M.; Bout-Roumazeilles, V.; Grousset, F.; Desmet, M.; Mcmanus, Jf; Massei, N.; Sebag, D.; Petit, J-R; Copard, Y.; Trentesaux, A., The origin of the 1500-year climate cycles in Holocene North-Atlantic records, Climate of the Past, 3, 569-575 (2007)
[29] De Geer, G., Geochronologie der letzten 12000 Jahre, Geologische Rundschau, 3, 457-471 (1912)
[30] De Geer, G., Correlation of late glacial annual clay-varves in North America with the Swedish time scale, Geologiska Foreningens i Stockholm Forhandlingar, 43, 70-73 (1921)
[31] Grimm, Ec, CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares, Computers & Geosciences, 13, 13-35 (1987)
[32] Goring, S.; Williams, Jw; Blois, Jl; Jackson, St; Paciorek, Cj; Booth, Rk; Marlon, Jr; Blaauw, M.; Christen, Ja, Deposition times in the northeastern United States during the Holocene: establishing valid priors for Bayesian age models, Quaternary Science Reviews, 48, 54-60 (2012)
[33] Goring, Sj; Mladenoff, Dj; Cogbill, Cv; Record, S.; Paciorek, Cj; Jackson, St; Dietze, Mc; Dawson, A.; Matthes, Jj; Mclachlan, Ja; Williams, Jw, Novel and lost forests in the upper midwestern United States, from new estimates of settlement-era composition, stem density, and bniomass, PLoS ONE, 11, 12, e0151935 (2016)
[34] Haesaerts, P.; Borziac, I.; Chekha, Vp; Chirica, V.; Damblon, F.; Drozdov, Ni; Orlova, La; Pirson, S.; Van Der Plicht, J., Climatic signature and radiocarbon chronology of middle and late pleniglacial loess from Eurasia: comparison with the marine and Greenland records, Radiocarbon, 51, 301-318 (2009)
[35] Haslett, J.; Parnell, Ac, A simple monotone process with application to radiocarbon-dated depth chronologies, Journal of the Royal Statistical Society, Series C, 57, 399-418 (2008) · Zbl 1409.62221
[36] Haslett, J.; Whiley, M.; Bhattacharya, S.; Mitchell, Fjg; Allen, Jrm; Huntley, B.; Wilson, Sp; Salter-Townshend, M., Bayesian palaeoclimate reconstruction, Journal of the Royal Statistical Society, Series A, 169, 395-438 (2006)
[37] Haug, Gh; Hughen, Ka; Sigman, Dm; Peterson, Lc; Rohl, U., Southward migration of the Intertropical Convergence Zone through the Holocene, Science, 293, 1304-1308 (2001)
[38] Heaton, Tj; Bard, E.; Hughen, Ka, Elastic tie-pointing-transferring chronologies between records via a Gaussian process, Radiocarbon, 55, 1975-1997 (2013)
[39] Hill, Mo; Gauch, Hg, Detrended Correspondence Analysis: An Improved Ordination Technique, Vegetatio, 42, 47-58 (1980)
[40] Holmström, L., BSiZer, Wiley Interdisciplinary Reviews: Computational Statistics, 2, 526-534 (2010)
[41] Holmström, L.; Ilvonen, L.; Seppä, H.; Veski, S., A Bayesian spatiotemporal model for reconstructing climate from multiple pollen records, The Annals of Applied Statistics, 9, 1194-1225 (2005) · Zbl 1454.62448
[42] Hutton, J., Theory of the earth, Transactions of the Royal Society of Edinburgh, 1, 209-304 (1788)
[43] Ilvonen, L.; Holmström, L.; Seppä, H.; Veski, S., A Bayesian multinomial regression model for palaeoclimate reconstruction with time uncertainty, Environmetrics, 27, 409-422 (2016)
[44] Imbrie, J.; Kipp, Ng; Turekian, Kk, A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene Caribbean core, The Late Cenozoic Glacial Ages, 71-181 (1971), New Haven: Yale University Press, New Haven
[45] Itambi, A. C.; Von Dobeneck, T.; Mulitza, S.; Bickert, T.; Heslop, D., Millennial-scale northwest African droughts related to Heinrich events and Dansgaard-Oeschger cycles: Evidence in marine sediments from offshore Senegal, Paleoceanography, 24, 1, n/a-n/a (2009)
[46] Jackson, St, Looking forward from the past: history, ecology, and conservation, Frontiers in Ecology and the Environment, 5, 455 (2007)
[47] Jackson, St, Representation of flora and vegetation in Quaternary fossil assemblages: known and unknown knowns and unknowns, Quaternary Science Reviews, 49, 1-15 (2012)
[48] Juggins, S., Quantitative reconstructions in palaeolimnology: new paradigm or sick science?, Quaternary Science Reviews, 64, 20-32 (2013)
[49] Juggins, S.; Simpson, Gl; Telford, Rj, Taxon selection using statistical learning techniques to improve transfer function prediction, The Holocene, 25, 130-136 (2014)
[50] Lisiecki, Lorraine E.; Raymo, Maureen E., A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, 1, n/a-n/a (2005)
[51] Maher, Lj Jr, Nomograms for computing 0.95 confidence limits of pollen data, Review of Palaeobotany and Palynology, 13, 85-93 (1972)
[52] Mann, Me; Bradley, Rs; Hughes, Mk, Global-scale temperature patterns and climate forcing over the past six centuries, Nature, 392, 779-787 (1998)
[53] Mauquoy, D., van Geel, B., 2007. Plant macrofossil methods and studies: Mire and Peat Macros. In Elias, S.A. (Ed), Encyclopedia of Quaternary Science, Elsevier, pp 2315-2336.
[54] Merritt, Ws; Letcher, Ra; Jakeman, Aj, A review of erosion and sediment transport models, Environmental Modelling & Software, 18, 761-799 (2003)
[55] Parnell, Ac; Buck, Ce; Doan, Tk, A review of statistical chronology models for high-resolution, proxy-based Holocene palaeoenvironmental reconstruction, Quaternary Science Reviews, 30, 2948-2960 (2011)
[56] Parnell, Ac; Haslett, J.; Sweeney, J.; Doan, Tk; Allen, Jrm; Huntley, B., Joint palaeoclimate reconstruction from pollen data via forward models and climate histories, Quaternary Science Reviews, 151, 111-126 (2016)
[57] Payne, R.; Gehrels, M., The formation of tephra layers in peatlands: an experimental approach, Catena, 81, 12-23 (2009)
[58] Prentice, Ic; Berglund, Be; Olsson, T., Quantitative forest-composition sensing characteristics of pollen samples from Swedish lakes, Boreas, 16, 43-54 (1987)
[59] Reimer, Pj; Bard, E.; Bayliss, A.; Beck, Jw; Blackwell, Pg; Bronk Ramsey, C.; Grootes, Pm; Guilderson, Tp; Haflidason, H.; Hajdas, I.; Hatté, C.; Heaton, Tj; Hoffmann, Dl; Hogg, Ag; Hughen, Ka; Kaiser, Kf; Kromer, B.; Manning, Sw; Niu, M.; Reimer, Rw; Richards, Da; Scott, Em; Southon, Jr; Staff, Ra; Turney, Csm; Van Der Plicht, J., IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP, Radiocarbon, 55, 1869-1887 (2013)
[60] Rimet, F.; Bouchez, A.; Tapolczai, K., Spatial heterogeneity of littoral benthic diatoms in a large lake: monitoring implications, Hydrobiologia, 771, 179-193 (2016)
[61] Scheffer, M.; Bascompte, J.; Brock, Wa; Brovkin, V.; Carpenter, Sr; Dakos, V.; Held, H.; Van Nes, Eh; Rietkerk, M.; Sugihara, G., Early-warning signals for critical transitions, Nature, 461, 53-59 (2009)
[62] Scott, E. M. (2013), “Radiocarbon dating - Sources of error,” In Elias, S.E. (Ed.), Encyclopedia of Quaternary Science \((2^{nd}\) edition), p 324-328.
[63] Seddon, Aw; Mackay, Aw; Baker, Ag; Birks, Hj; Breman, E.; Buck, Ce; Ellis, Ec; Froyd, Ca; Gill, Jl; Gillson, L.; Johnson, Ea; Jones, Vj; Juggins, S.; Macias-Fauria, M.; Mills, K.; Morris, Jl; Nogués-Bravo, D.; Punyasena, Sw; Roland, Tp; Tanentzap, Aj; Willis, Kj; Aberhan, M.; Asperen, En; Austin, We; Battarbee, Rw; Bhagwat, S.; Belanger, Cl; Bennett, Kd; Birks, Hh; Bronk Ramsey, C.; Brooks, Sj; Bruyn, M.; Butler, Pg; Chambers, Fm; Clarke, Sj; Davies, Al; Dearing, Ja; Ezard, Th; Feurdean, A.; Flower, Rj; Gell, P.; Hausmann, S.; Hogan, Ej; Hopkins, Mj; Jeffers, Es; Korhola, Aa; Marchant, R.; Kiefer, T.; Lamentowicz, M.; Larocque-Tobler, I.; López-Merino, L.; Liow, Lh; Mcgowan, S.; Miller, Jh; Montoya, E.; Morton, O.; Nogué, S.; Onoufriou, C.; Boush, Lp; Rodriguez-Sanchez, F.; Rose, Nl; Sayer, Cd; Shaw, He; Payne, R.; Simpson, G.; Sohar, K.; Whitehouse, Nj; Williams, Jw; Witkowski, A., Looking forward through the past: identification of 50 priority research questions in palaeoecology, Journal of Ecology, 102, 256-267 (2014)
[64] Swetnam, Tw; Betancourt, Jl, Fire-Southern Oscillation relations in the Southwestern United States, Science, 249, 1017-1020 (1990)
[65] Steffensen, Jp; Andersen, Kk; Bigler, M.; Clausen, Hb; Dahl-Jensen, D.; Fischer, H.; Goto-Azuma, K.; Hansson, M.; Johnson, Sj; Jouzel, J.; Masson-Delmotte, V.; Popp, T.; Rasmussen, So; Röthlisberger, R.; Ruth, U.; Stauffer, B.; Siggaard-Andersen, M-L; Sveinbjörnsdóttir, Áe; Svensson, A.; White, Jwc, High-resolution Greenland ice core data show abrupt climate change happens in a few years, Science, 321, 680-684 (2008)
[66] Sugita, S., Theory of quantitative reconstruction of vegetation II: all you need is LOVE, The Holocene, 17, 243-257 (2007)
[67] Ter Braak, Cjf; Juggins, S., Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages, Hydrobiologia, 269, 485-502 (1993)
[68] Theuerkauf, M.; Couwenberg, J., The extended downscaling approach: A new R-tool for pollen-based reconstruction of vegetation patterns, The Holocene, 27, 1252-1258 (2016)
[69] Trachsel, M.; Telford, Rj, All age-depth models are wrong, but are getting better, The Holocene, 27, 860-869 (2016)
[70] Turner, Te; Swindles, Gt; Charman, Dj; Langdon, Pg; Morris, Pj; Booth, Rk; Parry, Le; Nichols, Je, Solar cycles or random processes? Evaluating solar variability in Holocene climate records, Nature Scientific Reports, 6, 23961 (2016)
[71] Verschuren, Dirk; Sinninghe Damsté, Jaap S.; Moernaut, Jasper; Kristen, Iris; Blaauw, Maarten; Fagot, Maureen; Haug, Gerald H., Half-precessional dynamics of monsoon rainfall near the East African Equator, Nature, 462, 7273, 637-641 (2009)
[72] Von Post, L., The prospect for pollen analysis in the study of Earth’s climatic history, New Phytologist, 45, 193-217 (1946)
[73] Wörmer, L.; Elvert, M.; Fuchser, J.; Lipp, Js; Buttigieg, Js; Zabel, M.; Hinrichs, Ku, Ultra-high-resolution paleoenvironmental records via direct laser-based analysis of lipid biomarkers in sediment core samples, PNAS, 111, 15669-15674 (2014)
[74] Zolitschka, B.; Francus, P.; Ojala, Aek; Schimmelmann, A., Varves in lake sediments: a review, Quaternary Science Reviews, 117, 1-41 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.