×

A nested Schur complement solver with mesh-independent convergence for the time domain photonics modeling. (English) Zbl 1524.65319

Summary: A nested Schur complement solver is proposed for iterative solution of linear systems arising in exponential and implicit time integration of the Maxwell equations with perfectly matched layer (PML) nonreflecting boundary conditions. These linear systems are the so-called double saddle point systems whose structure is handled by the Schur complement solver in a nested, two-level fashion. The solver is demonstrated to have a mesh-independent convergence at the outer level, whereas the inner level system is of elliptic type and thus can be treated efficiently by a variety of solvers.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
78A25 Electromagnetic theory (general)
78M20 Finite difference methods applied to problems in optics and electromagnetic theory

Software:

expmARPACK; PARAEXP
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Botchev, M. A.; Hanse, A. M.; Uppu, R., Exponential Krylov time integration for modeling multi-frequency optical response with monochromatic sources, J. Comput. Appl. Math., 340, 474-485 (2018) · Zbl 1391.65124
[2] Descombes, S.; Durochat, C.; Lantéri, S.; Moya, L.; Scheid, C.; Viquerat, J., Recent advances on a DGTD method for time-domain electromagnetics, Photonics Nanostruct., 11, 4, 291-302 (2013)
[3] Sármány, D.; Botchev, M. A.; van der Vegt, J. J.W., Time-integration methods for finite element discretisations of the second-order Maxwell equation, Comput. Math. Appl., 65, 3, 528-543 (2013) · Zbl 1319.78019
[4] Verwer, J. G.; Botchev, M. A., Unconditionally stable integration of Maxwell’s equations, Linear Algebra Appl., 431, 3-4, 300-317 (2009) · Zbl 1170.78004
[5] Descombes, S.; Lantéri, S.; Moya, L., Locally implicit discontinuous Galerkin time domain method for electromagnetic wave propagation in dispersive media applied to numerical dosimetry in biological tissues, SIAM J. Sci. Comput., 38, 5, A2611-A2633 (2016) · Zbl 1351.35208
[6] Hochbruck, M.; Ostermann, A., Exponential integrators, Acta Numer., 19, 209-286 (2010) · Zbl 1242.65109
[7] Hochbruck, M.; Pažur, T.; Schulz, A.; Thawinan, E.; Wieners, C., Efficient time integration for discontinuous Galerkin approximations of linear wave equations, J. Appl. Math. Mech., 95, 3, 237-259 (2015) · Zbl 1322.65095
[8] Botchev, M. A., Krylov subspace exponential time domain solution of Maxwell’s equations in photonic crystal modeling, J. Comput. Appl. Math., 293, 24-30 (2016) · Zbl 1322.65056
[9] Gander, M. J.; Güttel, S., PARAEXP: A parallel integrator for linear initial-value problems, SIAM J. Sci. Comput., 35, 2, C123-C142 (2013) · Zbl 1266.65123
[10] Kooij, G. L.; Botchev, M. A.; Geurts, B. J., A block Krylov subspace implementation of the time-parallel Paraexp method and its extension for nonlinear partial differential equations, J. Comput. Appl. Math., 316, Suppl. C, 229-246 (2017) · Zbl 1375.65130
[11] Druskin, V. L.; Knizhnerman, L. A., Extended Krylov subspaces: approximation of the matrix square root and related functions, SIAM J. Matrix Anal. Appl., 19, 3, 755-771 (1998) · Zbl 0912.65022
[12] Moret, I.; Novati, P., RD rational approximations of the matrix exponential, BIT, 44, 595-615 (2004) · Zbl 1075.65062
[13] van den Eshof, J.; Hochbruck, M., Preconditioning Lanczos approximations to the matrix exponential, SIAM J. Sci. Comput., 27, 4, 1438-1457 (2006) · Zbl 1105.65051
[14] Güttel, S., Rational Krylov Methods for Operator Functions (2010), Technischen Universität Bergakademie Freiberg, www.guettel.com
[15] Niehoff, J., Projektionsverfahren zur Approximation von Matrixfunktionen mit Anwendungen auf die Implementierung exponentieller Integratoren (2006), Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf, (Ph.D. thesis)
[16] Tal-Ezer, H., On restart and error estimation for Krylov approximation of \(w = f ( A ) v\), SIAM J. Sci. Comput., 29, 6, 2426-2441 (2007) · Zbl 1154.65320
[17] Afanasjew, M.; Eiermann, M.; Ernst, O. G.; Güttel, S., Implementation of a restarted Krylov subspace method for the evaluation of matrix functions, Linear Algebra Appl., 429, 2293-2314 (2008) · Zbl 1153.65042
[18] Eiermann, M.; Ernst, O. G.; Güttel, S., Deflated restarting for matrix functions, SIAM J. Matrix Anal. Appl., 32, 2, 621-641 (2011) · Zbl 1264.65070
[19] Beik, F. P.A.; Benzi, M., Iterative methods for double saddle point systems, SIAM J. Matrix Anal. Appl., 39, 902-921 (2018) · Zbl 1391.65062
[20] Greif, C.; Schötzau, D., Preconditioners for the discretized time-harmonic Maxwell equations in mixed form, Numer. Linear Algebra Appl., 14, 4, 281-297 (2007) · Zbl 1199.78010
[21] Greif, C.; Schötzau, D., Preconditioners for saddle point linear systems with highly singular (1, 1) blocks, Electron. Trans. Numer. Anal., 22, 114-121 (2006), Special Volume on Saddle Point Problems · Zbl 1112.65042
[22] Benzi, M.; Olshanskii, M. A., An augmented Lagrangian-based approach to the Oseen problem, SIAM J. Sci. Comput., 28, 6, 2095-2113 (2006) · Zbl 1126.76028
[23] Benzi, M.; Olshanskii, M. A., Field-of-values convergence analysis of augmented lagrangian preconditioners for the linearized Navier-Stokes problem, SIAM J. Numer. Anal., 49, 2, 770-788 (2011) · Zbl 1245.76044
[24] Benzi, M.; Olshanskii, M. A.; Wang, Z., Modified augmented Lagrangian preconditioners for the incompressible Navier-Stokes equations, Internat. J. Numer. Methods Fluids, 66, 4, 486-508 (2011) · Zbl 1421.76152
[25] Johnson, S. G., Notes on perfectly matched layers (PMLs) (2010), math.mit.edu/ stevenj/18.369/pml.pdf
[26] Rodrigue, G.; White, D., A vector finite element time-domain method for solving Maxwell’s equations on unstructured hexahedral grids, SIAM J. Sci. Comput., 23, 3, 683-706 (2001) · Zbl 1003.78008
[27] Botchev, M. A.; Verwer, J. G., Numerical integration of damped Maxwell equations, SIAM J. Sci. Comput., 31, 2, 1322-1346 (2009) · Zbl 1229.78026
[28] Berenger, J., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185-200 (1994) · Zbl 0814.65129
[29] de Cloet, J.; Marissen, J.; Westendorp, T., Preconditioners Based on Splitting for Time Domain Photonic Crystal Modeling (2015), Applied Mathematics Department, University of Twente, http://essay.utwente.nl/67746/
[30] Murphy, M.; Golub, G.; Wathen, A., A note on preconditioning for indefinite linear systems, SIAM J. Sci. Comput., 21, 6, 1969-1972 (2000) · Zbl 0959.65063
[31] Benzi, M.; Golub, G. H.; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137 (2005) · Zbl 1115.65034
[32] Elman, H. C.; Silvester, D. J.; Wathen, A. J., Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics (2005), Oxford University Press · Zbl 1083.76001
[33] Meijerink, J. A.; van der Vorst, H. A., An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31, 137, 148-162 (1977) · Zbl 0349.65020
[34] Eisenstat, S. C., Efficient implementation of a class of preconditioned conjugate gradient methods, SIAM J. Sci. Comput., 2, 1, 1-4 (1981) · Zbl 0474.65020
[35] Hochbruck, M.; Jahnke, T.; Schnaubelt, R., Convergence of an ADI splitting for Maxwell’s equations, Numer. Math., 129, 3, 535-561 (2015) · Zbl 1323.78018
[36] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869 (1986) · Zbl 0599.65018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.