×

A new linearized split Bregman iterative algorithm for image reconstruction in sparse-view X-ray computed tomography. (English) Zbl 1443.92107

Summary: In this paper, a new linearized split Bregman iterative algorithm is proposed for sparse-view X-ray computed tomography, which can avoid solving a large-scale and unstructured linear system in each iteration. Remarkably, our method can be generalized to efficiently resolve some other image processing and analysis models, for instance, the robust compressed sensing, the total variation-\(\ell_1\), and the \(\ell_1\)-\(\ell_1\). We also give rigorous proofs for the convergence of the proposed method under appropriate conditions for the aforementioned problems. Experimental results demonstrate that our algorithm has better performance in terms of reconstruction quality, effectiveness and robustness, compared with some other methods (e.g. gradient-flow-based semi-implicit finite element method, split Bregman, etc.) for the robust image reconstruction in sparse-view X-ray computed tomography.

MSC:

92C55 Biomedical imaging and signal processing

Software:

FTVd
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Feldkamp, L.; Davis, L.; Kress, J., Practical cone-beam algorithm, J. Opt. Soc. Amer. A, 1, 6, 612-619 (1984)
[2] Wang, G.; Lin, T.; Cheng, P.; Shinozaki, D., A general cone-beam reconstruction algorithm, IEEE Trans. Med. Imaging, 12, 3, 486-496 (1993)
[3] Tang, X.; Hsieh, J.; Nilsen, R.; Dutta, S.; Samsonov, D.; Hagiwara, A., A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT-helical scanning, Phys. Med. Biol., 51, 4, 855 (2006)
[4] Han, X.; Bian, J.; Ritman, E.; Sidky, E.; Pan, X., Optimization-based reconstruction of sparse images from few-view projections, Phys. Med. Biol., 57, 16, 5245 (2012)
[5] Fahimian, B.; Zhao, Y.; Fung, R.; Mao, Y.; Zhu, C.; Huang, Z.; Khatonabadi, M.; DeMarco, J.; Osher, S.; McNitt-Gray, M.; Miao, J., Radiation dose reduction in medical CT through equally sloped tomography, (UCLA CAM Reports: 11-42 (2011))
[6] Delaney, A.; Bresler, Y., Globally convergent edge-preserving regularized reconstruction: an application to limited-angle tomography, IEEE Trans. Image Process., 7, 2, 204-221 (1998)
[7] Sidky, E.; Kao, C.; Pan, X., Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT, J. X-Ray Sci. Technol., 14, 2, 119-139 (2006)
[8] Pan, X.; Sidky, E.; Vannier, M., Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?, Inverse Problems, 25, 12, Article 123009 pp. (2009) · Zbl 1185.68811
[9] Chen, C.; Xu, G., Gradient-flow-based semi-implicit finite-element method and its convergence analysis for image reconstruction, Inverse Problems, 28, 3, Article 035006 pp. (2012) · Zbl 1236.78029
[10] Sidky, E.; Jørgensen, J.; Pan, X., Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm, Phys. Med. Biol., 57, 10, 3065 (2012)
[11] Hsieh, J.; Nett, B.; Yu, Z.; Sauer, K.; Thibault, J.; Bouman, C., Recent advances in CT image reconstruction, Curr. Radiol. Rep., 1, 1, 39-51 (2013)
[12] Donoho, D., Compressed sensing, IEEE Trans. Inform. Theory, 52, 4, 1289-1306 (2006) · Zbl 1288.94016
[13] Candès, E.; Romberg, J.; Tao, T., Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52, 2, 489-509 (2006) · Zbl 1231.94017
[14] Candès, E.; Romberg, J.; Tao, T., Stable signal recovery from incomplete and inaccurate measurements, Comm. Pure Appl. Math., 59, 8, 1207-1223 (2006) · Zbl 1098.94009
[15] Candès, E., The restricted isometry property and its implications for compressed sensing, C. R. Math., 346, 9, 589-592 (2008) · Zbl 1153.94002
[16] Delaney, A.; Bresler, Y., A fast and accurate fourier algorithm for iterative parallel-beam tomography, IEEE Trans. Image Process., 5, 5, 740-753 (1996)
[17] Rudin, L.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 259-268 (1992) · Zbl 0780.49028
[18] Charbonnier, P.; Blanc-Féraud, L.; Aubert, G.; Barlaud, M., Deterministic edge-preserving regularization in computed imaging, IEEE Trans. Image Process., 6, 2, 298-311 (1997)
[19] Xu, G.; Li, M.; Gopinath, A.; Bajaj, C., Inversion of electron tomography images using l2-gradient flow—computational methods, J. Comput. Math., 29, 501-525 (2011) · Zbl 1245.92046
[20] Osher, S.; Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces, Vol. 153 (2003), Springer · Zbl 1026.76001
[21] Vogel, C.; Oman, M., Iterative methods for total variation denoising, SIAM J. Sci. Comput., 17, 1, 227-238 (1996) · Zbl 0847.65083
[22] Sidky, E.; Pan, X., Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Phys. Med. Biol., 53, 17, 4777 (2008)
[23] Goldstein, T.; Osher, S., The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2, 2, 323-343 (2009) · Zbl 1177.65088
[24] Chen, C.; Xu, G., Computational inversion of electron micrographs using L2-gradient flows—convergence analysis, Math. Methods Appl. Sci., 36, 18, 2492-2506 (2013) · Zbl 1278.65142
[25] Xu, G.; Chen, C., Blended finite element method and its convergence for three-dimensional image reconstruction using \(l^2\)-gradient flow, Commun. Math. Sci., 12, 6, 989-1015 (2014) · Zbl 1307.65178
[26] Goldstein, T.; Bresson, X.; Osher, S., Geometric applications of the split Bregman method: segmentation and surface reconstruction, J. Sci. Comput., 45, 272-293 (2010) · Zbl 1203.65044
[27] Hale, E.; Yin, W.; Zhang, Y., Fixed-point continuation for \(\ell_1\)-minimization: Methodology and convergence, SIAM J. Optim., 19, 3, 1107-1130 (2008) · Zbl 1180.65076
[28] Glowinski, R., Lectures on Numerical Methods for Non-Linear Variational Problems (2008), Springer · Zbl 0456.65035
[29] Glowinski, R.; Le Tallec, P., Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, Vol. 9 (1989), SIAM · Zbl 0698.73001
[30] Yang, J.; Zhang, Y., Alternating direction algorithms for \(\ell_1\)-problems in compressive sensing, SIAM J. Sci. Comput., 33, 1, 250-278 (2011) · Zbl 1256.65060
[31] Cai, J.; Osher, S.; Shen, Z., Split Bregman methods and frame based image restoration, Multiscale Model. Simul., 8, 2, 337-369 (2009) · Zbl 1189.94014
[32] Candès, E.; Wakin, M., An introduction to compressive sampling, IEEE Signal Process. Mag., 25, 2, 21-30 (2008)
[33] Nikolova, M., Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers, SIAM J. Numer. Anal., 40, 3, 965-994 (2002) · Zbl 1018.49025
[34] Chan, T.; Esedoglu, S., Aspects of total variation regularized \(l^1\) function approximation, SIAM J. Appl. Math., 65, 5, 1817-1837 (2005) · Zbl 1096.94004
[35] Fu, H.; Ng, M.; Nikolova, M.; Barlow, J., Efficient minimization methods of mixed l2-l1 and l1-l1 norms for image restoration, SIAM J. Sci. Comput., 27, 6, 1881-1902 (2006) · Zbl 1103.65044
[36] Wu, C.; Zhang, J.; Tai, X., Augmented Lagrangian method for total variation restoration with non-quadratic fidelity, Inverse Probl. Imaging, 5, 1, 237-261 (2011) · Zbl 1225.80013
[37] Rockafellar, R., Convex Analysis, Vol. 28 (1997), Princeton University Press · Zbl 0932.90001
[38] Bregman, L., The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Math. Phys., 7, 3, 200-217 (1967) · Zbl 0186.23807
[39] Osher, S.; Burger, M.; Goldfarb, D.; Xu, J.; Yin, W., An iterative regularization method for total variation-based image restoration, Multiscale Model. Simul., 4, 2, 460-489 (2005) · Zbl 1090.94003
[40] Esser, E., Applications of Lagrangian-based alternating direction methods and connections to split Bregman, (CAM Report 9 (2009)), 31
[41] Yang, J.; Zhang, Y.; Yin, W., An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise, SIAM J. Sci. Comput., 31, 4, 2842-2865 (2009) · Zbl 1195.68110
[42] Ramani, S.; Fessler, J., A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction, IEEE Trans. Med. Imaging, 31, 3, 677-688 (2012)
[43] Ma, S.; Goldfarb, D.; Chen, L., Fixed point and Bregman iterative methods for matrix rank minimization, Math. Program., 128, 1-2, 321-353 (2011) · Zbl 1221.65146
[44] Chan, R.; Tao, M.; Yuan, X., Linearized alternating direction method for constrained linear least-squares problem, East Asian J. Appl. Math., 2, 4, 326-341 (2012) · Zbl 1284.68624
[45] Yang, J.; Yuan, X., Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization, Math. Comp., 82, 281, 301-329 (2013) · Zbl 1263.90062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.