×

Rumor spreading: a trigger for proliferation or fading away. (English) Zbl 1445.91048

Summary: The dynamics of rumor spreading is investigated using a model with three kinds of agents who are, respectively, the Seeds, the Agnostics, and the Others. While Seeds are the ones who start spreading the rumor being adamantly convinced of its truth, Agnostics reject any kind of rumor and do not believe in conspiracy theories. In between, the Others constitute the main part of the community. While Seeds are always Believers and Agnostics are always Indifferents, Others can switch between being Believer and Indifferent depending on who they are discussing with. The underlying driving dynamics is implemented via local updates of randomly formed groups of agents. In each group, an Other turns into a Believer as soon as \(m\) or more Believers are present in the group. However, since some Believers may lose interest in the rumor as time passes by, we add a flipping fixed rate \(0 < d < 1\) from Believers into Indifferents. Rigorous analysis of the associated dynamics reveals that switching from \(m = 1\) to \(m \geq 2\) triggers a drastic qualitative change in the spreading process. When \(m = 1\), even a small group of Believers may manage to convince a large part of the community very quickly. In contrast, for \(m \geq 2\), even a substantial fraction of Believers does not prevent the rumor dying out after a few update rounds. Our results provide an explanation on why a given rumor spreads within a social group and not in another and also why some rumors will not spread in neither groups.
©2020 American Institute of Physics

MSC:

91D30 Social networks; opinion dynamics
60J20 Applications of Markov chains and discrete-time Markov processes on general state spaces (social mobility, learning theory, industrial processes, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Galam, S., Modelling rumors: The no plane Pentagon French hoax case, Physica A, 320, 571-580 (2003) · Zbl 1010.91088 · doi:10.1016/S0378-4371(02)01582-0
[2] Hu, Y.; Pan, Q.; Hou, W.; He, M., Rumor spreading model with the different attitudes towards rumors, Physica A, 502, 331-344 (2018) · Zbl 1514.91143 · doi:10.1016/j.physa.2018.02.096
[3] Zhao, L.; Xie, W.; Gao, H. O.; Qiu, X.; Wang, X.; Zhang, S., A rumor spreading model with variable forgetting rate, Physica A, 392, 23, 6146-6154 (2013) · Zbl 1395.05166 · doi:10.1016/j.physa.2013.07.080
[4] Moreno, Y.; Nekovee, M.; Pacheco, A. F., Dynamics of rumor spreading in complex networks, Phys. Rev. E, 69, 6, 066130 (2004) · doi:10.1103/PhysRevE.69.066130
[5] Rabajante, J. F.; Umali, R., A mathematical model of rumor propagation for disaster management, J. Nat. Stud., 10, 2, 61-70 (2011)
[6] Bovet, A.; Makse, H. A., Influence of fake news in Twitter during the 2016 US presidential election, Nat. Commun., 10, 1, 7 (2019) · doi:10.1038/s41467-018-07761-2
[7] Tian, Y.; Ding, X., Rumor spreading model with considering debunking behavior in emergencies, Appl. Math. Comput., 363, 124599 (2019) · Zbl 1433.91120
[8] Gärtner, B.; Zehmakan, A. N., Threshold behavior of democratic opinion dynamics, J. Stat. Phys., 178, 1-25 (2020) · Zbl 1436.91096 · doi:10.1007/s10955-020-02515-1
[9] Nowak, B.; Sznajd-Weron, K.
[10] Pires, M. A.; Crokidakis, N., Dynamics of epidemic spreading with vaccination: Impact of social pressure and engagement, Physica A, 467, 167-179 (2017) · Zbl 1400.92328 · doi:10.1016/j.physa.2016.10.004
[11] Kawachi, K., Deterministic models for rumor transmission, Nonlinear Anal.: Real World Appl., 9, 5, 1989-2028 (2008) · Zbl 1156.91460 · doi:10.1016/j.nonrwa.2007.06.004
[12] Zehmakan, A. N.
[13] Galam, S., Minority opinion spreading in random geometry, Eur. Phys. J. B, 25, 4, 403-406 (2002)
[14] Fourquet, J., “Enquête complotisme 2019: focus sur le mouvement des gilets jaunes,” February 2019.
[15] Frankovic, K., “Belief in conspiracies largely depends on political identity,” December 2016.
[16] Wang, C.; Tan, Z. X.; Ye, Y.; Wang, L.; Cheong, K. H.; Xie, N.-G., A rumor spreading model based on information entropy, Sci. Rep., 7, 1, 9615 (2017) · doi:10.1038/s41598-017-09171-8
[17] Bellomo, N.; Brezzi, F.; Pulvirenti, M., Modeling behavioral social systems, Math. Mod. Meth. Appl. Sci., 27, 1, 1-11 (2017) · Zbl 1355.00017 · doi:10.1142/S0218202517020018
[18] Malarz, K.; Szvetelszky, Z.; Szekfu, B.; Kulakowski, K., Gossip in random networks, Acta Phys. Pol. B, 37, 3049-3058 (2006)
[19] Zhang, Y.; Zhu, J., Dynamic behavior of an I2S2R rumor propagation model on weighted contract networks, Physica A, 536, 120981 (2019) · Zbl 07571482 · doi:10.1016/j.physa.2019.04.217
[20] Jeger, C.; Zehmakan, A. N., Dynamic monopolies in two-way bootstrap percolation, Discrete Appl. Math., 262, 116-126 (2019) · Zbl 1478.60263 · doi:10.1016/j.dam.2019.02.011
[21] Zehmakan, A. N., Opinion forming in Erdős-Rényi random graph and expanders, Discrete Appl. Math., 277, 280-290 (2019) · Zbl 1435.05185 · doi:10.1016/j.dam.2019.10.001
[22] Riedl, E., Largest minimal percolating sets in hypercubes under \(2\)-bootstrap percolation, Electron. J. Comb., 17, 1, 80 (2010) · Zbl 1228.60114 · doi:10.37236/352
[23] Hambardzumyan, L.; Hatami, H.; Qian, Y.
[24] Janson, S.; Łuczak, T.; Turova, T.; Vallier, T., Bootstrap percolation on the random graph \(g_{n, p}\), Ann. Appl. Probab., 22, 5, 1989-2047 (2012) · Zbl 1254.05182 · doi:10.1214/11-AAP822
[25] Zehmakan, A. N., “Tight bounds on the minimum size of a dynamic monopoly,” in International Conference on Language and Automata Theory and Applications (Springer, 2019), pp. 381-393. · Zbl 1425.05146
[26] Zhao, L.; Wang, Q.; Cheng, J.; Chen, Y.; Wang, J.; Huang, W., Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal, Physica A, 390, 13, 2619-2625 (2011) · doi:10.1016/j.physa.2011.03.010
[27] Huo, L.; Wang, L.; Song, N.; Ma, C.; He, B., Rumor spreading model considering the activity of spreaders in the homogeneous network, Physica A, 468, 855-865 (2017) · Zbl 1400.91426 · doi:10.1016/j.physa.2016.11.039
[28] Balister, P.; Bollobás, B.; Johnson, J. R.; Walters, M., Random majority percolation, Random Struct. Algorithms, 36, 3, 315-340 (2010) · Zbl 1202.60152
[29] Flocchini, P.; Lodi, E.; Luccio, F.; Pagli, L.; Santoro, N., Dynamic monopolies in tori, Discrete Appl. Math., 137, 2, 197-212 (2004) · Zbl 1104.90050 · doi:10.1016/S0166-218X(03)00261-0
[30] Morrison, N.; Noel, J. A., Extremal bounds for bootstrap percolation in the hypercube, J. Comb. Theor. Ser. A, 156, 61-84 (2018) · Zbl 1381.05072 · doi:10.1016/j.jcta.2017.11.018
[31] Balogh, J.; Bollobás, B., Bootstrap percolation on the hypercube, Probab. Theor. Relat. Fields, 134, 4, 624-648 (2006) · Zbl 1087.60068 · doi:10.1007/s00440-005-0451-6
[32] Balogh, J.; Bollobás, B.; Morris, R., Majority bootstrap percolation on the hypercube, Comb. Probab. Comput., 18, 1-2, 17-51 (2009) · Zbl 1198.60041 · doi:10.1017/S0963548308009322
[33] Angel, O.; Kolesnik, B.
[34] Feige, U.; Krivelevich, M.; Reichman, D., Contagious sets in random graphs, Ann. Appl. Probab., 27, 5, 2675-2697 (2017) · Zbl 1387.05233 · doi:10.1214/16-AAP1254
[35] Amini, H.; Fountoulakis, N., Bootstrap percolation in power-law random graphs, J. Stat. Phys., 155, 1, 72-92 (2014) · Zbl 1291.82052 · doi:10.1007/s10955-014-0946-6
[36] Avin, C., Lotker, Z., Mizrachi, A., and Peleg, D., “Majority vote and monopolies in social networks,” in Proceedings of the 20th International Conference on Distributed Computing and Networking (ACM, 2019), pp. 342-351.
[37] Galam, S., Contrarian deterministic effects on opinion dynamics: ‘The hung elections scenario, Physica A, 333, 453-460 (2004) · doi:10.1016/j.physa.2003.10.041
[38] Gekle, S.; Peliti, L.; Galam, S., Opinion dynamics in a three-choice system, Eur. Phys. J. B, 45, 4, 569-575 (2005) · doi:10.1140/epjb/e2005-00215-3
[39] Qian, S.; Liu, Y.; Galam, S., Activeness as a key to counter democratic balance, Physica A, 432, 187-196 (2015) · Zbl 1400.91434 · doi:10.1016/j.physa.2015.03.029
[40] Daley, D. J.; Kendall, D. G., Stochastic rumours, IMA J. Appl. Math., 1, 1, 42-55 (1965) · doi:10.1093/imamat/1.1.42
[41] Maki, D. P.; Thompson, M., Mathematical Models and Applications, with Emphasis on Social, Life, and Management Sciences (1973), Prentice-Hall: Prentice-Hall, Englewood Cliffs, NJ
[42] Zanette, D. H., Dynamics of rumor propagation on small-world networks, Phys. Rev. E, 65, 4, 041908 (2002) · doi:10.1103/PhysRevE.65.041908
[43] Sznajd-Weron, K.; Sznajd, J., Opinion evolution in closed community, Int. J. Modern Phys. C, 11, 6, 1157-1165 (2000) · doi:10.1142/S0129183100000936
[44] Panagiotou, K.; Speidel, L., Asynchronous rumor spreading on random graphs, Algorithmica, 78, 3, 968-989 (2017) · Zbl 1372.68034 · doi:10.1007/s00453-016-0188-x
[45] Martins, A. C. R., Continuous opinions and discrete actions in opinion dynamics problems, Int. J. Mod. Phys. C, 19, 4, 617-624 (2008) · Zbl 1152.91423 · doi:10.1142/S0129183108012339
[46] Liu, Q.; Li, T.; Sun, M., The analysis of an SEIR rumor propagation model on heterogeneous network, Physica A, 469, 372-380 (2017) · Zbl 1400.91479 · doi:10.1016/j.physa.2016.11.067
[47] Xia, L.; Jiang, G.; Song, Y.; Song, B., Modeling and analyzing the interaction between network rumors and authoritative information, Entropy, 17, 1, 471-482 (2015) · doi:10.3390/e17010471
[48] Zhu, L.; Wang, Y., Rumor spreading model with noise interference in complex social networks, Physica A, 469, 750-760 (2017) · Zbl 1400.91503 · doi:10.1016/j.physa.2016.11.119
[49] Hui, W.; Jiang-Hong, H.; Lin, D.; Ke-Qing, C., Dynamics of rumor spreading in mobile social networks, Acta Phys. Sin., 62, 110505 (2013) · doi:10.7498/aps.62.110505
[50] HongYong, Z.; Linhe, Z., Research on rumor spreading dynamics in social networks, J. Nanjing Univ. Aeronaut. Astronaut., 47, 3, 332 (2015)
[51] Dong, S.; Fan, F.-H.; Huang, Y.-C., Studies on the population dynamics of a rumor-spreading model in online social networks, Physica A, 492, 10-20 (2018) · Zbl 1514.91120 · doi:10.1016/j.physa.2017.09.077
[52] Zhao, L.; Wang, J.; Chen, Y.; Wang, Q.; Cheng, J.; Cui, H., SIHR rumor spreading model in social networks, Physica A, 391, 7, 2444-2453 (2012) · doi:10.1016/j.physa.2011.12.008
[53] Xiong, F.; Liu, Y.; Zhang, Z.-J.; Zhu, J.; Zhang, Y., An information diffusion model based on retweeting mechanism for online social media, Phys. Lett. A, 376, 30-31, 2103-2108 (2012) · doi:10.1016/j.physleta.2012.05.021
[54] Zhu, L.; Zhao, H.; Wang, H., Complex dynamic behavior of a rumor propagation model with spatial-temporal diffusion terms, Inf. Sci., 349, 119-136 (2016) · Zbl 1398.91489 · doi:10.1016/j.ins.2016.02.031
[55] Dubhashi, D. P.; Panconesi, A., Concentration of Measure for the Analysis of Randomized Algorithms (2009), Cambridge University Press · Zbl 1213.60006
[56] Marsaglia, G.; Marsaglia, J. C. W., A new derivation of Stirling’s approximation to n!, Am. Math. Mon., 97, 9, 826-829 (1990) · Zbl 0786.05007 · doi:10.1080/00029890.1990.11995666
[57] Andrews, G. E., The Theory of Partitions (1998), Cambridge University Press · Zbl 0996.11002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.