×

Molecular dynamics study of the fibril elongation of the prion protein fragment PrP106-126. (English) Zbl 1451.92142

Summary: The present paper aims at exploring the elongation of the PrP106-126 fibril under acid environments through molecular dynamics simulation. It shows that influenced by the edge strands of the fibril, single PrP106-126 peptide forms \(\beta\)-sheet and becomes a new element of the fibril. Under acidic condition, single PrP106-126 fragment presents a much larger variety of conformations than it does under neural condition. However, acidic condition does not largely affect the stability of the PrP106-126 fibril. Consequently, the speed of the fibril elongation can be dramatically increased by lowering the pH value of the solution. The pH values are adjusted by either altering the protonation state of the residues or adding hydronium ions or hydroxyl ions.

MSC:

92C40 Biochemistry, molecular biology

Software:

Gromacs; GROMOS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Berendsen, H. J.C.; Postma, J. P.M.; Gusteren, W. F.; Hermans, J., Intermolecular Forces (1981), Reidel: Reidel Dordrecht
[2] Berendsen, H. J.C.; van Spoel, D.; van Drunen, R., Comput. Phys. Commun., 91, 43-56 (1995)
[3] Collins, S. J.; Lawson, V. A.; Masters, C. L., Transmissible spongiform encephalopathies, Lancet, 363, 51-61 (2004)
[4] DeMarco, M. L.; Daggett, V., From conversion to aggregation: protofibril formation of the prion protein, Proc. Natl Acad. Sci. USA, 101, 2293-2298 (2004)
[5] Errington, J. R.; Debenedetti, P. G., Relationship between structural order and the anomalies of liquid water, Nature, 409, 318-321 (2001)
[6] Forloni, G.; Angeretti, N.; Chiesa, R.; Monzani, E.; Salmona, M.; Bugiani, O.; Tagliavini, F., Neurotoxicity of a prion protein fragment, Nature, 362, 543-546 (1993)
[7] Hornemann, S.; Glockshuber, R., A scrapie-like unfolding intermediate of the prion protein domain PrP121-231 induced by acidic pH, Proc. Natl Acad. Sci. USA, 95, 6010-6014 (1998)
[8] Kabsch, W.; Sander, C., Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, 22, 2577-2637 (1983)
[9] Kuwata, K.; Matumoto, T.; Cheng, H.; Nagayama, K.; James, T. L.; Roder, H., Proc. Natl Acad. Sci. USA, 100, 14790-14795 (2003)
[10] Lindahl, E.; Hess, B.; van der Spoel, D., Gromacs 3.0: a package for molecular simulation and trajectory analysis, J. Mol. Modeling, 7, 306-317 (2001)
[11] Ma, B.; Nussinov, R., Molecular dynamics simulations of alanine rich \(\beta \)-sheet oligomers: insight into amyloid formation, Protein Sci., 11, 2335-2350 (2002)
[12] Morrissey, M. P.; Shakhnovich, E. I., Evidence for the role of \(\operatorname{PrP}^{\operatorname{C}}\) helix 1 in the hydrophilic seeding of prion aggregates, Proc. Natl Acad. Sci. USA, 96, 11293-11298 (1999)
[13] Pan, K. M.; Baldwin, M.; Nguyen, J.; Gasset, M.; Serban, A.; Groth, D.; Mehlehorn, I.; Huang, Z.; Fletterick, R. J.; Cohen, F. E.; Prusiner, S. B., Conversion of \(\alpha \)-helices \(\beta \)-sheets features in the formation of the scrapie prion proteins, Proc. Natl Acad. Sci. USA, 90, 10962-10966 (1993)
[14] Petkova, A. T.; Ishii, Y.; Balbach, J. J.; Antzutkin, O. N.; Leapman, R. D.; Delaglio, F.; Tycko, R., A structural model for alzheimer’s \(\beta \)-amyloid fibrils based on experimental constraints from solid state NMR, Proc. Natl Acad. Sci. USA, 99, 16742-16747 (2002)
[15] Prusiner, S., Prion diseases and the BSE crisis, Science, 278, 245-257 (1996)
[16] Prusiner, S., Shattuck lecture: neurodegenerative diseases and prions, N. Engl. J. Med., 344, 1516-1526 (2001)
[17] Safar, J.; Roller, P. P.; Gajdusek, D. C.; Gibbs, C. J., Thermal stability and conformational transitions of scrapie amyloid (prion) protein correlate with infectivity, Protein Sci., 2, 2206-2216 (1993)
[18] Salmona, M.; Malesani, P.; Gioia, L. D.; Gorla, S.; Bruschi, M.; Molinari, A.; Vedova, R. D.; Pedrotti, B.; Marrari, M. A.; Awan, T.; Bugiani, O.; Forloni, G.; Tagliavini, F., Molecular determinants of the physicochemical properties of a critical prion protein region comprising residues 106-126, Biochem. J., 342, 207-214 (1999)
[19] Selvaggini, C.; Gioia, L. D.; Cantu, L.; Ghibaudi, E.; Diomede, L.; Passerini, F.; Forloni, G.; Tagliavini, O. B.F.; Salmona, M., Molecular characteristics of a protease-resistant, amyloidogenic and neurotoxic peptide homologous to residues 106-126 of the prion protein, Biochem. Biophys. Res. Commun., 194, 1380-1386 (1993)
[20] Swietnicki, W.; Petersen, R.; Gambetti, P.; Surewicz, W. K., pH-dependent stability and conformation of the recombinant human prion protein PrP90-231, J. Bio. Chem., 272, 27517-27520 (1997)
[21] Tagliavini, F.; Prelli, F.; Verga, L.; Giaccone, G.; Sarma, R.; Gorevic, P.; Ghetti, B.; Passerini, F.; Ghibaudi, E.; Forloni, G.; Salmona, M.; Bugiani, O.; Frangione, B., Synthetic peptides homologous to prion protein residues 106-147 form amyloid-like fibrils in vitro, Proc. Natl. Acad. Sci. USA, 90, 9678-9682 (1993)
[22] Tarek, M.; Tobias, D. J., Role of protein-water hydrogen bond dynamics in the protein dynamical transition, Phys. Rev. Lett., 88, 138101 (2002)
[23] van Gunsteren, W.F., Billeter, S.R., Eising, A.A., Hunenberger, P.H., Kruger, P., Mark, A.E., Scott, W.R.P., Tironi, I.G., 1996. Biomolecular Simulation: The GROMOS96 Manual and Userguide. Hochschulverlag AG an der ETH Zurich, Switzerland, Zurich.
[24] Zhang, H.; Kaneko, K.; Nguyen, J. T.; Livshits, T. L.; Baldwin, M. A.; Cohen, F. E.; James, T. L.; Prusiner, S. B., J. Mol. Biol., 250, 514-526 (1995)
[25] Zhang, Y.; Dai, L.; Iwamoto, M.; can Ou-Yang, Z., Molecular dynamics study on the conformational transition of prion induced by the point mutation: F198s, Thin Solid Film, 449, 224-228 (2006)
[26] Zhang, Y., Qian, J., Wang, P.-Y., can Ou-Yang, Z., 2007. Molecular dynamical simulations of point mutation occurring at the 198th site of prion protein. J. Comput. Theor. Nanoscience, will appear in 2007.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.