×

Statistical methodology in single-molecule experiments. (English) Zbl 07292497

Summary: Toward the last quarter of the 20th century, the emergence of single-molecule experiments enabled scientists to track and study individual molecules’ dynamic properties in real time. Unlike macroscopic systems’ dynamics, those of single molecules can only be properly described by stochastic models even in the absence of external noise. Consequently, statistical methods have played a key role in extracting hidden information about molecular dynamics from data obtained through single-molecule experiments. In this article, we survey the major statistical methodologies used to analyze single-molecule experimental data. Our discussion is organized according to the types of stochastic models used to describe single-molecule systems as well as major experimental data collection techniques. We also highlight challenges and future directions in the application of statistical methodologies to single-molecule experiments.

MSC:

62-XX Statistics

Software:

vbFRET; HSMUCE
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] Andrec, M., Levy, R. M. and Talaga, D. S. (2003). Direct determination of kinetic rates from single-molecule photon arrival trajectories using hidden Markov models. J. Phys. Chem. A 107 7454-7464.
[2] Arcizet, D., Meier, B., Sackmann, E., Rädler, J. O. and Heinrich, D. (2008). Temporal analysis of active and passive transport in living cells. Phys. Rev. Lett. 101 248103.
[3] Ball, F. G. and Sansom, M. S. P. (1989). Ion-channel gating mechanisms: Model identification and parameter estimation from single channel recordings. Proc. R. Soc. Lond., B Biol. Sci. 236 385-416.
[4] Ball, F. G., Cai, Y., Kadane, J. B. and O’hagan, A. (1999). Bayesian inference for ion-channel gating mechanisms directly from single-channel recordings, using Markov chain Monte Carlo. Proc. R. Soc. Lond. A Mat. 455 2879-2932. · Zbl 1063.62586 · doi:10.1098/rspa.1999.0432
[5] Barry, D. and Hartigan, J. A. (1993). A Bayesian analysis for change point problems. J. Amer. Statist. Assoc. 88 309-319. · Zbl 0775.62065
[6] Bauer, M., Li, C., Müllen, K., Basché, T. and Hinze, G. (2018). State transition identification in multivariate time series (STIMTS) applied to rotational jump trajectories from single molecules. J. Chem. Phys. 149 164104.
[7] Berezhkovskii, A. M., Szabo, A. and Weiss, G. H. (2000). Theory of the fluorescence of single molecules undergoing multistate conformational dynamics. J. Phys. Chem. B 104 3776-3780.
[8] Berglund, A. J. (2010). Statistics of camera-based single-particle tracking. Phys. Rev. E 82 011917.
[9] Bernstein, J. and Fricks, J. (2016). Analysis of single particle diffusion with transient binding using particle filtering. J. Theoret. Biol. 401 109-121. · Zbl 1343.92143 · doi:10.1016/j.jtbi.2016.04.013
[10] Blainey, P. C., Luo, G., Kou, S. C., Mangel, W. F., Verdine, G. L., Bagchi, B. and Xie, S. X. (2009). Nonspecifically bound proteins spin while diffusing along DNA. Nat. Struct. Mol. Biol. 16 1224-1229.
[11] Blanco, M. and Walter, N. G. (2010). Analysis of complex single-molecule FRET time trajectories. In Methods in Enzymology 472 153-178. Elsevier, Amsterdam.
[12] Blanco, M. R., Martin, J. S., Kahlscheuer, M. L., Krishnan, R., Abelson, J., Laederach, A. and Walter, N. G. (2015). Single molecule cluster analysis dissects splicing pathway conformational dynamics. Nat. Methods 12 1077-1084.
[13] Bokinsky, G., Rueda, D., Misra, V. K., Rhodes, M. M., Gordus, A., Babcock, H. P., Walter, N. G. and Zhuang, X. (2003). Single-molecule transition-state analysis of RNA folding. Proc. Natl. Acad. Sci. USA 100 9302-9307.
[14] Bosch, P. J., Kanger, J. S. and Subramaniam, V. (2014). Classification of dynamical diffusion states in single molecule tracking microscopy. Biophys. J. 107 588-598.
[15] Boysen, L., Kempe, A., Liebscher, V., Munk, A. and Wittich, O. (2009). Consistencies and rates of convergence of jump-penalized least squares estimators. Ann. Statist. 37 157-183. · Zbl 1155.62034 · doi:10.1214/07-AOS558
[16] Braun, J. V., Braun, R. K. and Müller, H.-G. (2000). Multiple changepoint fitting via quasilikelihood, with application to DNA sequence segmentation. Biometrika 87 301-314. · Zbl 0963.62067 · doi:10.1093/biomet/87.2.301
[17] Brock, R., Hink, M. A. and Jovin, T. M. (1998). Fluorescence correlation microscopy of cells in the presence of autofluorescence. Biophys. J. 75 2547-2557.
[18] Bronson, J. E., Fei, J., Hofman, J. M., Gonzalez Jr, R. L. and Wiggins, C. H. (2009). Learning rates and states from biophysical time series: A Bayesian approach to model selection and single-molecule FRET data. Biophys. J. 97 3196-3205.
[19] Chen, Y., Fuh, C.-D., Kao, C.-L. and Kou, S. C. (2019). Determine the number of states in hidden Markov models via marginal likelihood. Preprint.
[20] Chen, Y., Müller, J. D., So, P. T. C. and Gratton, E. (1999). The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys. J. 77 553-567.
[21] Chen, Y., Shen, K., Shan, S.-O. and Kou, S. C. (2016). Analyzing single-molecule protein transportation experiments via hierarchical hidden Markov models. J. Amer. Statist. Assoc. 111 951-966.
[22] Chernoff, H. and Zacks, S. (1964). Estimating the current mean of a normal distribution which is subjected to changes in time. Ann. Math. Stat. 35 999-1018. · Zbl 0218.62033 · doi:10.1214/aoms/1177700517
[23] Chib, S. (1998). Estimation and comparison of multiple change-point models. J. Econometrics 86 221-241. · Zbl 1045.62510 · doi:10.1016/S0304-4076(97)00115-2
[24] Chung, H. S. and Gopich, I. V. (2014). Fast single-molecule FRET spectroscopy: Theory and experiment. Phys. Chem. Chem. Phys. 16 18644-18657.
[25] Chung, S. H. and Kennedy, R. A. (1991). Forward-backward non-linear filtering technique for extracting small biological signals from noise. J. Neurosci. Methods 40 71-86.
[26] Chung, H. S., Louis, J. M. and Gopich, I. V. (2016). Analysis of fluorescence lifetime and energy transfer efficiency in single-molecule photon trajectories of fast-folding proteins. J. Phys. Chem. B 120 680-699.
[27] Chung, S.-H., Moore, J. B., Xia, L., Premkumar, L. S. and Gage, P. W. (1990). Characterization of single channel currents using digital signal processing techniques based on hidden Markov models. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 329 265-285.
[28] Chung, I., Akita, R., Vandlen, R., Toomre, D., Schlessinger, J. and Mellman, I. (2010). Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464 783-787.
[29] Clausen, M. P. and Lagerholm, C. B. (2013). Visualization of plasma membrane compartmentalization by high-speed quantum dot tracking. Nano Lett. 13 2332-2337.
[30] Colquhoun, D. and Hawkes, A. G. (1981). On the stochastic properties of single ion channels. Proc. R. Soc. Lond., B Biol. Sci. 211 205-235.
[31] Das, R., Cairo, C. W. and Coombs, D. (2009). A hidden Markov model for single particle tracks quantifies dynamic interactions between LFA-1 and the actin cytoskeleton. PLoS Comput. Biol. 5 e1000556, 16.
[32] de Gunst, M. C. M. and Schouten, B. (2003). Model selection for hidden Markov models of ion channel data by reversible jump Markov chain Monte Carlo. Bernoulli 9 373-393. · Zbl 1042.92011 · doi:10.3150/bj/1065444810
[33] Del Castillo, J. and Katz, B. (1957). Interaction at end-plate receptors between different choline derivatives. Proc. R. Soc. Lond., B Biol. Sci. 146 369-381.
[34] Du, C., Kao, C.-L. M. and Kou, S. C. (2016). Stepwise signal extraction via marginal likelihood. J. Amer. Statist. Assoc. 111 314-330.
[35] Du, C. and Kou, S. C. (2012). Correlation analysis of enzymatic reaction of a single protein molecule. Ann. Appl. Stat. 6 950-976. · Zbl 1254.92034 · doi:10.1214/12-AOAS541
[36] Du, C. and Kou, S. C. (2020). Supplement to “Statistical methodology in single-molecule experiments.” https://doi.org/10.1214/19-STS752SUPP.
[37] Elson, E. L. (2011). Fluorescence correlation spectroscopy: Past, present, future. Biophys. J. 101 2855-2870.
[38] Elson, E. L. and Magde, D. (1974). Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers: Original Research on Biomolecules 13 1-27.
[39] Enderlein, J., Gregor, I., Patra, D. and Fitter, J. (2005). Statistical analysis of diffusion coefficient determination by fluorescence correlation spectroscopy. J. Fluoresc. 15 415-422.
[40] English, B. P., Min, W., van Oijen, A. M., Lee, K. T., Luo, G., Sun, H., Cherayil, B. J., Kou, S. C. and Xie, X. S. (2006). Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nat. Chem. Biol. 2 87-94.
[41] Epstein, M., Calderhead, B., Girolami, M. A. and Sivilotti, L. G. (2016). Bayesian statistical inference in ion-channel models with exact missed event correction. Biophys. J. 111 333-348.
[42] Fearnhead, P. and Liu, Z. (2007). On-line inference for multiple changepoint problems. J. R. Stat. Soc. Ser. B. Stat. Methodol. 69 589-605. · Zbl 07555366
[43] Floyd, D. L., Harrison, S. C. and Van Oijen, A. M. (2010). Analysis of kinetic intermediates in single-particle dwell-time distributions. Biophys. J. 99 360-366.
[44] Fredkin, D. R. and Rice, J. A. (1992a). Bayesian restoration of single-channel patch clamp recordings. Biometrics 427-448.
[45] Fredkin, D. R. and Rice, J. A. (1992b). Maximum likelihood estimation and identification directly from single-channel recordings. Proc. R. Soc. Lond., B Biol. Sci. 249 125-132.
[46] Frick, K., Munk, A. and Sieling, H. (2014). Multiscale change point inference. J. R. Stat. Soc. Ser. B. Stat. Methodol. 76 495-580. · Zbl 1411.62065 · doi:10.1111/rssb.12047
[47] Gassiat, E. and Rousseau, J. (2014). About the posterior distribution in hidden Markov models with unknown number of states. Bernoulli 20 2039-2075. · Zbl 1302.62183 · doi:10.3150/13-BEJ550
[48] Gennerich, A. and Schild, D. (2000). Fluorescence correlation spectroscopy in small cytosolic compartments depends critically on the diffusion model used. Biophys. J. 79 3294-3306.
[49] Gin, E., Falcke, M., Wagner, L. E., Yule, D. I. and Sneyd, J. (2009). Markov chain Monte Carlo fitting of single-channel data from inositol trisphosphate receptors. J. Theoret. Biol. 257 460-474. · Zbl 1400.92184 · doi:10.1016/j.jtbi.2008.12.020
[50] Gloter, A. and Jacod, J. (2001). Diffusions with measurement errors. I. Local asymptotic normality. ESAIM Probab. Stat. 5 225-242. · Zbl 1008.60089 · doi:10.1051/ps:2001110
[51] Ha, T., Enderle, T., Ogletree, D. F., Chemla, D. S., Selvin, P. R. and Weiss, S. (1996). Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. USA 93 6264-6268.
[52] Haran, G. (2004). Noise reduction in single-molecule fluorescence trajectories of folding proteins. Chem. Phys. 307 137-145.
[53] He, J., Guo, S.-M. and Bathe, M. (2012). Bayesian approach to the analysis of fluorescence correlation spectroscopy data I: Theory. Anal. Chem. 84 3871-3879.
[54] Hines, K. E., Bankston, J. R. and Aldrich, R. W. (2015). Analyzing single-molecule time series via nonparametric Bayesian inference. Biophys. J. 108 540-556.
[55] Hinkley, D. V. (1970). Inference about the change-point in a sequence of random variables. Biometrika 57 1-17. · Zbl 0198.51501 · doi:10.1093/biomet/57.1.1
[56] Hodgson, M. E. A. and Green, P. J. (1999). Bayesian choice among Markov models of ion channels using Markov chain Monte Carlo. Proc. R. Soc. Lond. A Mat. 455 3425-3448. · Zbl 1063.62594 · doi:10.1098/rspa.1999.0459
[57] Horn, R. (1987). Statistical methods for model discrimination. Applications to gating kinetics and permeation of the acetylcholine receptor channel. Biophys. J. 51 255-263.
[58] Huet, S., Karatekin, E., Tran, V. S., Fanget, I., Cribier, S. and Henry, J.-P. (2006). Analysis of transient behavior in complex trajectories: Application to secretory vesicle dynamics. Biophys. J. 91 3542-3559.
[59] Jeon, J.-H. and Metzler, R. (2010). Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries. Phys. Rev. E 81 021103, 11.
[60] Kask, P., Palo, K., Fay, N., Brand, L., Mets, Ü., Ullmann, D., Jungmann, J., Pschorr, J. and Gall, K. (2000). Two-dimensional fluorescence intensity distribution analysis: Theory and applications. Biophys. J. 78 1703-1713.
[61] Keller, B. G., Kobitski, A., Jäschke, A., Nienhaus, G. U. and Noé, F. (2014). Complex RNA folding kinetics revealed by single-molecule FRET and hidden Markov models. J. Am. Chem. Soc. 136 4534-4543.
[62] Kepten, E., Bronshtein, I. and Garini, Y. (2013). Improved estimation of anomalous diffusion exponents in single-particle tracking experiments. Phys. Rev. E 87 052713.
[63] Kepten, E., Weron, A., Sikora, G., Burnecki, K. and Garini, Y. (2015). Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments. PLoS ONE 10 e0117722.
[64] Koo, P. K. and Mochrie, S. G. J. (2016). Systems-level approach to uncovering diffusive states and their transitions from single-particle trajectories. Phys. Rev. E 94 052412.
[65] Koo, P. K., Weitzman, M., Sabanaygam, C. R., van Golen, K. L. and Mochrie, S. G. J. (2015). Extracting diffusive states of Rho GTPase in live cells: Towards in vivo biochemistry. PLoS Comput. Biol. 11 e1004297.
[66] Koppel, D. E. (1974). Statistical accuracy in fluorescence correlation spectroscopy. Phys. Rev. A 10 1938.
[67] Kou, S. C. (2008a). Stochastic modeling in nanoscale biophysics: Subdiffusion within proteins. Ann. Appl. Stat. 2 501-535. · Zbl 1400.62272 · doi:10.1214/07-AOAS149
[68] Kou, S. C. (2008b). Stochastic networks in nanoscale biophysics: Modeling enzymatic reaction of a single protein. J. Amer. Statist. Assoc. 103 961-975. · Zbl 1205.62172 · doi:10.1198/016214507000001021
[69] Kou, S. C. and Xie, X. S. (2004). Generalized Langevin equation with fractional Gaussian noise: Subdiffusion within a single protein molecule. Phys. Rev. Lett. 93 180603.
[70] Kou, S. C., Xie, X. S. and Liu, J. S. (2005). Bayesian analysis of single-molecule experimental data. J. R. Stat. Soc. Ser. C. Appl. Stat. 54 469-506. · Zbl 1490.62346 · doi:10.1111/j.1467-9876.2005.00509.x
[71] Kou, S. C., Cherayil, B. J., Min, W., English, B. P. and Xie, X. S. (2005). Single-molecule Michaelis-Menten equations. J. Phys. Chem. B 109 19068-19081.
[72] Kusumi, A., Sako, Y. and Yamamoto, M. (1993). Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65 2021-2040.
[73] Liu, Y., Park, J., Dahmen, K. A., Chemla, Y. R. and Ha, T. (2010). A comparative study of multivariate and univariate hidden Markov modelings in time-binned single-molecule FRET data analysis. J. Phys. Chem. B 114 5386-5403.
[74] Lu, H. P., Xun, L. and Xie, X. S. (1998). Single-molecule enzymatic dynamics. Science 282 1877-1882.
[75] Magde, D., Elson, E. and Webb, W. W. (1972). Thermodynamic fluctuations in a reacting systemmeasurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29 705-708.
[76] McKinney, S. A., Joo, C. and Ha, T. (2006). Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91 1941-1951.
[77] McKinney, S. A., Déclais, A.-C., Lilley, D. M. J. and Ha, T. (2003). Structural dynamics of individual holliday junctions. Nat. Struct. Mol. Biol. 10 93-97.
[78] Meilhac, N., Le Guyader, L., Salome, L. and Destainville, N. (2006). Detection of confinement and jumps in single-molecule membrane trajectories. Phys. Rev. E 73 011915.
[79] Melnykov, A. V. and Hall, K. B. (2009). Revival of high-order fluorescence correlation analysis: Generalized theory and biochemical applications. J. Phys. Chem. B 113 15629-15638.
[80] Meseth, U., Wohland, T., Rigler, R. and Vogel, H. (1999). Resolution of fluorescence correlation measurements. Biophys. J. 76 1619-1631.
[81] Metzler, R. and Klafter, J. (2000). The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339 77. · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[82] Metzler, R., Jeon, J.-H., Cherstvy, A. G. and Barkai, E. (2014). Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16 24128-24164.
[83] Michalet, X. (2010). Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys. Rev. E 82 041914, 13.
[84] Min, W., English, B., Luo, G., Cherayil, B., Kou, S. C. and Xie, X. S. (2005). Fluctuating enzymes: Lessons from single-molecule studies. Acc. Chem. Res. 38 923-931.
[85] Monnier, N., Guo, S.-M., Mori, M., He, J., Lénárt, P. and Bathe, M. (2012). Bayesian approach to MSD-based analysis of particle motion in live cells. Biophys. J. 103 616-626.
[86] Monnier, N., Barry, Z., Park, H. Y., Su, K.-C., Katz, Z., English, B. P., Dey, A., Pan, K., Cheeseman, I. M. et al. (2015). Inferring transient particle transport dynamics in live cells. Nat. Methods 12 838-840.
[87] Müller, J. D. (2004). Cumulant analysis in fluorescence fluctuation spectroscopy. Biophys. J. 86 3981-3992.
[88] Müller, J. D., Chen, Y. and Gratton, E. (2000). Resolving heterogeneity on the single molecular level with the photon-counting histogram. Biophys. J. 78 474-486.
[89] Neher, E. and Sakmann, B. (1976). Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260 799-802.
[90] Okamoto, K. and Sako, Y. (2012). Variational Bayes analysis of a photon-based hidden Markov model for single-molecule FRET trajectories. Biophys. J. 103 1315-1324.
[91] Orrit, M., Ha, T. and Sandoghdar, V. (2014). Single-molecule optical spectroscopy. Chem. Soc. Rev. 43 973-976.
[92] Ott, M., Shai, Y. and Haran, G. (2013). Single-particle tracking reveals switching of the HIV fusion peptide between two diffusive modes in membranes. J. Phys. Chem. B 117 13308-13321.
[93] Pein, F., Sieling, H. and Munk, A. (2017). Heterogeneous change point inference. J. R. Stat. Soc. Ser. B. Stat. Methodol. 79 1207-1227. · Zbl 1373.62258 · doi:10.1111/rssb.12202
[94] Persson, F., Lindén, M., Unoson, C. and Elf, J. (2013). Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat. Methods 10 265-269.
[95] Piatt, S. and Price, A. C. (2019). Analyzing dwell times with the generalized method of moments. PLoS ONE 14 e0197726.
[96] Qian, H. and Elson, E. L. (1990a). Distribution of molecular aggregation by analysis of fluctuation moments. Proc. Natl. Acad. Sci. USA 87 5479-5483.
[97] Qian, H. and Elson, E. L. (1990b). On the analysis of high order moments of fluorescence fluctuations. Biophys. J. 57 375-380.
[98] Qian, H. and Kou, S. C. (2014). Statistics and related topics in single-molecule biophysics. Annu. Rev. Stat. Appl. 1 465-492.
[99] Qian, H., Sheetz, M. P. and Elson, E. L. (1991). Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J. 60 910-921.
[100] Qin, F. (2004). Restoration of single-channel currents using the segmental k-means method based on hidden Markov modeling. Biophys. J. 86 1488-1501.
[101] Qin, F., Auerbach, A. and Sachs, F. (2000a). A direct optimization approach to hidden Markov modeling for single channel kinetics. Biophys. J. 79 1915-1927.
[102] Qin, F., Auerbach, A. and Sachs, F. (2000b). Hidden Markov modeling for single channel kinetics with filtering and correlated noise. Biophys. J. 79 1928-1944.
[103] Renner, M., Wang, L., Levi, S., Hennekinne, L. and Triller, A. (2017). A simple and powerful analysis of lateral subdiffusion using single particle tracking. Biophys. J. 113 2452-2463.
[104] Rosales, R. A. (2004). MCMC for hidden Markov models incorporating aggregation of states and filtering. Bull. Math. Biol. 66 1173-1199. · Zbl 1334.92148 · doi:10.1016/j.bulm.2003.12.001
[105] Rosales, R., Stark, J. A., Fitzgerald, W. J. and Hladky, S. B. (2001). Bayesian restoration of ion channel records using hidden Markov models. Biophys. J. 80 1088-1103.
[106] Sakmann, B. (2013). Single-Channel Recording. Springer, Berlin.
[107] Saxton, M. J. (1993). Lateral diffusion in an archipelago. Single-particle diffusion. Biophys. J. 64 1766-1780.
[108] Saxton, M. J. (1994). Single-particle tracking: Models of directed transport. Biophys. J. 67 2110-2119.
[109] Saxton, M. J. (1997). Single-particle tracking: The distribution of diffusion coefficients. Biophys. J. 72 1744-1753.
[110] Saxton, M. J. and Jacobson, K. (1997). Single-particle tracking: Applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26 373-399.
[111] Sbalzarini, I. F. and Koumoutsakos, P. (2005). Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151 182-195.
[112] Schenter, G. K., Lu, H. P. and Xie, X. S. (1999). Statistical analyses and theoretical models of single-molecule enzymatic dynamics. J. Phys. Chem. A 103 10477-10488.
[113] Schmid, S. and Hugel, T. (2018). Efficient use of single molecule time traces to resolve kinetic rates, models and uncertainties. J. Chem. Phys. 148 123312.
[114] Schmidt, T., Schütz, G. J., Baumgartner, W., Gruber, H. J. and Schindler, H. (1996). Imaging of single molecule diffusion. Proc. Natl. Acad. Sci. USA 93 2926-2929.
[115] Schröder, G. F. and Grubmüller, H. (2003). Maximum likelihood trajectories from single molecule fluorescence resonance energy transfer experiments. J. Chem. Phys. 119 9920-9924.
[116] Siekmann, I., Sneyd, J. and Crampin, E. J. (2014). Statistical analysis of modal gating in ion channels. Proc. R. Soc. A 470 20140030.
[117] Siekmann, I., Wagner II, L. E., Yule, D., Fox, C., Bryant, D., Crampin, E. J. and Sneyd, J. (2011). MCMC estimation of Markov models for ion channels. Biophys. J. 100 1919-1929.
[118] Sikora, G., Kepten, E., Weron, A., Balcerek, M. and Burnecki, K. (2017a). An efficient algorithm for extracting the magnitude of the measurement error for fractional dynamics. Phys. Chem. Chem. Phys. 19 26566-26581.
[119] Sikora, G., Teuerle, M., Wyłomańska, A. and Grebenkov, D. (2017b). Statistical properties of the anomalous scaling exponent estimator based on time-averaged mean-square displacement. Phys. Rev. E 96 022132.
[120] Simson, R., Sheets, E. D. and Jacobson, K. (1995). Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys. J. 69 989-993.
[121] Slator, P. J. and Burroughs, N. J. (2018). A hidden Markov model for detecting confinement in single-particle tracking trajectories. Biophys. J. 115 1741-1754.
[122] Slator, P. J., Cairo, C. W. and Burroughs, N. J. (2015). Detection of diffusion heterogeneity in single particle tracking trajectories using a hidden Markov model with measurement noise propagation. PLoS ONE 10 e0140759.
[123] Smith, A. F. M. (1975). A Bayesian approach to inference about a change-point in a sequence of random variables. Biometrika 62 407-416. · Zbl 0321.62041 · doi:10.1093/biomet/62.2.407
[124] Suh, J., Choy, K.-L., Lai, S. K., Suk, J. S., Tang, B. C., Prabhu, S. and Hanes, J. (2007). PEGylation of nanoparticles improves their cytoplasmic transport. Int. J. Nanomed. 2 735-741.
[125] Sun, G., Guo, S.-M., Teh, C., Korzh, V., Bathe, M. and Wohland, T. (2015). Bayesian model selection applied to the analysis of fluorescence correlation spectroscopy data of fluorescent proteins in vitro and in vivo. Anal. Chem. 87 4326-4333.
[126] Taylor, J. N., Makarov, D. E. and Landes, C. F. (2010). Denoising single-molecule FRET trajectories with wavelets and Bayesian inference. Biophys. J. 98 164-173.
[127] Tsekouras, K., Custer, T. C., Jashnsaz, H., Walter, N. G. and Pressé, S. (2016). A novel method to accurately locate and count large numbers of steps by photobleaching. Mol. Biol. Cell 27 3601-3615.
[128] VanDongen, A. M. (1996). A new algorithm for idealizing single ion channel data containing multiple unknown conductance levels. Biophys. J. 70 1303-1315.
[129] van de Meent, J.-W., Bronson, J. E., Wiggins, C. H. and Gonzalez Jr, R. L. (2014). Empirical Bayes methods enable advanced population-level analyses of single-molecule FRET experiments. Biophys. J. 106 1327-1337.
[130] Venkataramanan, L., Kuc, R. and Sigworth, F. J. (1998). Identification of hidden Markov models for ion channel currents. II. State-dependent excess noise. IEEE Trans. Signal Process. 46 1916-1929.
[131] Venkataramanan, L., Walsh, J. L., Kuc, R. and Sigworth, F. J. (1998). Identification of hidden Markov models for ion channel currents. I. Colored background noise. IEEE Trans. Signal Process. 46 1901-1915.
[132] Vestergaard, C. L., Blainey, P. C. and Flyvbjerg, H. (2014). Optimal estimation of diffusion coefficients from single-particle trajectories. Phys. Rev. E 89 022726.
[133] Wagner, T., Kroll, A., Haramagatti, C. R., Lipinski, H.-G. and Wiemann, M. (2017). Classification and segmentation of nanoparticle diffusion trajectories in cellular micro environments. PLoS ONE 12 e0170165.
[134] Wohland, T., Rigler, R. and Vogel, H. (2001). The standard deviation in fluorescence correlation spectroscopy. Biophys. J. 80 2987-2999.
[135] Wu, B. and Müller, J. D. (2005). Time-integrated fluorescence cumulant analysis in fluorescence fluctuation spectroscopy. Biophys. J. 89 2721-2735.
[136] Wu, Z., Bi, H., Pan, S., Meng, L. and Zhao, X. S. (2016). Determination of equilibrium constant and relative brightness in fluorescence correlation spectroscopy by considering third-order correlations. J. Phys. Chem. B 120 11674-11682.
[137] Yang, S. and Cao, J. (2001). Two-event echos in single-molecule kinetics: A signature of conformational fluctuations. J. Phys. Chem. B 105 6536-6549.
[138] Yang, H. and Xie, X. S. (2002). Statistical approaches for probing single-molecule dynamics photon-by-photon. Chem. Phys. 284 423-437.
[139] Yang, H., Luo, G., Karnchanaphanurach, P., Louie, T.-M., Rech, I., Cova, S., Xun, L. and Xie, X. S. (2003). Protein conformational dynamics probed by single-molecule electron transfer. Science 302 262-266.
[140] Yao, Y.-C. (1988). Estimating the number of change-points via Schwarz’ criterion. Statist. Probab. Lett. 6 181-189. · Zbl 0642.62016 · doi:10.1016/0167-7152(88)90118-6
[141] Yin, S., Song, N. and Yang, H. (2018). Detection of velocity and diffusion coefficient change points in single-particle trajectories. Biophys. J. 115 217-229.
[142] Zhang, T. and Kou, S. C. (2010). Nonparametric inference of doubly stochastic Poisson process data via the kernel method. Ann. Appl. Stat. 4 1913-1941. · Zbl 1220.62037 · doi:10.1214/10-AOAS352
[143] Zhang, N. R. and Siegmund, D. O. (2007). A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data. Biometrics 63 22-32, 309. · Zbl 1206.62174 · doi:10.1111/j.1541-0420.2006.00662.x
[144] Zhuang, X., Bartley, L. E., Babcock, H. P., Russell, R., Ha, T., Herschlag, D. and Chu, S. (2000). A single-molecule study of RNA catalysis and folding. Science 288 2048-2051.
[145] Zhuang, X., Kim, H., Pereira, M. J. B., Babcock, H. P., Walter, N. G. and Chu, S. (2002). Correlating structural dynamics and function in single ribozyme molecules. Science 296 1473-1476.
[146] Zwanzig, R.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.