×

LGM split sampler: an efficient MCMC sampling scheme for latent Gaussian models. (English) Zbl 07292510

Summary: A general and flexible class of latent Gaussian models is proposed in this paper. The latent Gaussian model is adapted to the generalized additive model for location, scale and shape (GAMLSS), that is, the data density function of each data point can depend on more than a single linear predictor of the latent parameters. We refer to this framework as extended latent Gaussian models. The most commonly applied latent Gaussian models (LGMs) are such that a linear predictor is proposed only for the location parameter. Extended LGMs allow proposing linear predictors also for the scale parameter and potentially other parameters. We propose a novel computationally efficient Markov chain Monte Carlo sampling scheme for the extended LGMs which we refer to as the LGM split sampler. It is a two block Gibbs sampling scheme designed to exploit the model structure of the extended LGMs. An extended LGM is constructed for a simulated dataset and the LGM split sampler is implemented for posterior simulations. The results demonstrate the flexibility of the extended LGM framework and the efficiency of the LGM split sampler.

MSC:

62-XX Statistics

Software:

Fahrmeir; GAMLSS; GMRFLib
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] Chilès, J.-P. and Delfiner, P. (2012). Geostatistics: Modeling Spatial Uncertainty, 2nd ed. Wiley Series in Probability and Statistics. Wiley, Hoboken, NJ. · Zbl 1256.86007
[2] Cooley, D., Nychka, D. and Naveau, P. (2007). Bayesian spatial modeling of extreme precipitation return levels. J. Amer. Statist. Assoc. 102 824-840. · Zbl 1469.62389 · doi:10.1198/016214506000000780
[3] Cressie, N. A. C. (1993). Statistics for Spatial Data, 2nd ed. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Wiley, New York. · Zbl 0799.62002
[4] Crochet, P. (2012). Estimating the flood frequency distribution for ungauged catchments using an index flood procedure. Application to ten catchments in Northern Iceland. Technical Report No. VÍ 2012-005, The Icelandic Meteorological Office.
[5] Crochet, P., Jóhannesson, T., Jónsson, T., Sigurðsson, O., Björnsson, H., Pálsson, F. and Barstad, I. (2007). Estimating the spatial distribution of precipitation in Iceland using a linear model of orographic precipitation. J. Hydrometeorol. 8 1285-1306.
[6] Cunnane, C. and Nash, J. E. (1971). Bayesian estimation of frequency of hydrological events. Proc. Warsaw Symp. Math. Models Hydrol. 1 47-55.
[7] Davíðsson, Ó. B. (2015). Bayesian flood frequency analysis using monthly maxima. Master’s thesis, Univ. Iceland.
[8] Davison, A. C., Padoan, S. A. and Ribatet, M. (2012). Statistical modeling of spatial extremes. Statist. Sci. 27 161-186. · Zbl 1330.86021 · doi:10.1214/11-STS376
[9] Diggle, P. J., Tawn, J. A. and Moyeed, R. A. (1998). Model-based geostatistics. J. R. Stat. Soc. Ser. C. Appl. Stat. 47 299-350. · Zbl 0904.62119 · doi:10.1111/1467-9876.00113
[10] Fahrmeir, L. and Tutz, G. (1994). Multivariate Statistical Modelling Based on Generalized Linear Models. Springer Series in Statistics. Springer, New York. · Zbl 0809.62064
[11] Ferkingstad, E., Frigessi, A., Rue, H., Thorleifsson, G. and Kong, A. (2008). Unsupervised empirical Bayesian multiple testing with external covariates. Ann. Appl. Stat. 2 714-735. · Zbl 1400.62258 · doi:10.1214/08-AOAS158
[12] Filippone, M., Zhong, M. and Girolami, M. (2013). A comparative evaluation of stochastic-based inference methods for Gaussian process models. Mach. Learn. 93 93-114. · Zbl 1294.62048 · doi:10.1007/s10994-013-5388-x
[13] Geirsson, Ó. P., Hrafnkelsson, B. and Simpson, D. (2015). Computationally efficient spatial modeling of annual maximum 24-h precipitation on a fine grid. Environmetrics 26 339-353.
[14] Geirsson, Ó. P., Hrafnkelsson, B., Simpson, D. and Sigurdarson, H. (2020). Supplement to “LGM split sampler: An efficient MCMC sampling scheme for latent Gaussian models.” https://doi.org/10.1214/19-STS727SUPP.
[15] Girolami, M. and Calderhead, B. (2011). Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. Ser. B. Stat. Methodol. 73 123-214. · Zbl 1411.62071 · doi:10.1111/j.1467-9868.2010.00765.x
[16] GREHYS (1996). Presentation and review of some methods for regional flood frequency analysis. J. Hydrol. 186 63-84.
[17] Guttorp, P. and Gneiting, T. (2006). Studies in the history of probability and statistics. XLIX. On the Matérn correlation family. Biometrika 93 989-995. · Zbl 1436.62013 · doi:10.1093/biomet/93.4.989
[18] Hrafnkelsson, B., Morris, J. S. and Baladandayuthapani, V. (2012). Spatial modeling of annual minimum and maximum temperatures in Iceland. Meteorol. Atmos. Phys. 116 43-61.
[19] Klein, N., Kneib, T., Lang, S. et al. (2013). Bayesian structured additive distributional regression. Technical Report No. 2013-23, Department of Public Finance, Univ. Innsbruck. · Zbl 1454.62486 · doi:10.1214/16-AOAS922
[20] Klein, N., Kneib, T., Klasen, S. and Lang, S. (2015). Bayesian structured additive distributional regression for multivariate responses. J. R. Stat. Soc. Ser. C. Appl. Stat. 64 569-591. · doi:10.1111/rssc.12090
[21] Kneib, T. (2013). Beyond mean regression. Stat. Model. 13 275-303. · Zbl 07257458
[22] Knorr-Held, L. and Rue, H. (2002). On block updating in Markov random field models for disease mapping. Scand. J. Stat. 29 597-614. · Zbl 1039.62092 · doi:10.1111/1467-9469.00308
[23] Lawson, A. B. (2013). Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. Interdisciplinary Statistics. CRC Press, Boca Raton, FL. · Zbl 1266.62091
[24] Lindgren, F., Rue, H. and Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B. Stat. Methodol. 73 423-498. · Zbl 1274.62360 · doi:10.1111/j.1467-9868.2011.00777.x
[25] Martino, S., Aas, K., Lindqvist, O., Neef, L. R. and Rue, H. (2011). Estimating stochastic volatility models using integrated nested Laplace approximations. Eur. J. Finance 17 487-503.
[26] Martins, T. G., Simpson, D., Lindgren, F. and Rue, H. (2013a). Bayesian computing with INLA: New features. Comput. Statist. Data Anal. 67 68-83. · Zbl 1471.62135 · doi:10.1016/j.csda.2013.04.014
[27] Martins, T. G., Simpson, D., Illian, J. B., Rue, H. and Geirsson, Ó. P. (2013b). Discussion of ‘Beyond mean regression’ [MR3179527]. Stat. Model. 13 355-361.
[28] Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods. Technical Report No. CRG-TR-93-1, Department of Computer Science, Univ. Toronto.
[29] Pettitt, A. N., Weir, I. S. and Hart, A. G. (2002). A conditional autoregressive Gaussian process for irregularly spaced multivariate data with application to modelling large sets of binary data. Stat. Comput. 12 353-367.
[30] Rigby, R. A. and Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape. J. R. Stat. Soc. Ser. C. Appl. Stat. 54 507-554. · Zbl 1490.62201 · doi:10.1111/j.1467-9876.2005.00510.x
[31] Roberts, G. O., Gelman, A. and Gilks, W. R. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7 110-120. · Zbl 0876.60015 · doi:10.1214/aoap/1034625254
[32] Roberts, G. O. and Rosenthal, J. S. (1998). Optimal scaling of discrete approximations to Langevin diffusions. J. R. Stat. Soc. Ser. B. Stat. Methodol. 60 255-268. · Zbl 0913.60060 · doi:10.1111/1467-9868.00123
[33] Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications. Monographs on Statistics and Applied Probability 104. CRC Press/CRC, Boca Raton, FL. · Zbl 1093.60003
[34] Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B. Stat. Methodol. 71 319-392. · Zbl 1248.62156 · doi:10.1111/j.1467-9868.2008.00700.x
[35] Rue, H., Riebler, A., Sørbye,.S. H., Illian, J. B., Simpson, D. P. and Lindgren, F. K. (2017). Bayesian computing with INLA: A review. Ann. Rev. Stat. Appl. 4 395-421.
[36] Schaefli, B., Talamba, D. B. and Musy, A. (2007). Quantifying hydrological modeling errors through a mixture of normal distributions. J. Hydrol. 332 303-315.
[37] Zhang, H. · Zbl 1089.62538 · doi:10.1198/016214504000000241
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.