×

Bridging the computational gap between mesoscopic and continuum modeling of red blood cells for fully resolved blood flow. (English) Zbl 1453.76235

Summary: We present a computational framework for the simulation of blood flow with fully resolved red blood cells (RBCs) using a modular approach that consists of a lattice Boltzmann solver for the blood plasma, a novel finite element based solver for the deformable bodies and an immersed boundary method for the fluid-solid interaction. For the RBCs, we propose a nodal projective FEM (npFEM) solver which has theoretical advantages over the more commonly used mass-spring systems (mesoscopic modeling), such as an unconditional stability, versatile material expressivity, and one set of parameters to fully describe the behavior of the body at any mesh resolution. At the same time, the method is substantially faster than other FEM solvers proposed in this field, and has an efficiency that is comparable to the one of mesoscopic models. At its core, the solver uses specially defined potential energies, and builds upon them a fast iterative procedure based on quasi-Newton techniques. For a known material, our solver has only one free parameter that demands tuning, related to the body viscoelasticity. In contrast, state-of-the-art solvers for deformable bodies have more free parameters, and the calibration of the models demands special assumptions regarding the mesh topology, which restrict their generality and mesh independence. We propose as well a modification to the potential energy proposed by Skalak et al. 1973 for the red blood cell membrane, which enhances the strain hardening behavior at higher deformations. Our viscoelastic model for the red blood cell, while simple enough and applicable to any kind of solver as a post-convergence step, can capture accurately the characteristic recovery time and tank-treading frequencies. The framework is validated using experimental data, and it proves to be scalable for multiple deformable bodies.

MSC:

76Z05 Physiological flows
76M10 Finite element methods applied to problems in fluid mechanics
76M28 Particle methods and lattice-gas methods
76T20 Suspensions
92C35 Physiological flow
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)

Software:

npFEM; Hemocell
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Mountrakis, L., Transport of Blood Cells Studied with Fully Resolved Models (2015), University of Amsterdam, PhD thesis
[2] Tomaiuolo, G., Biomechanical properties of red blood cells in health and disease towards microfluidics, Biomicrofluidics, 8, Article 51501 pp. (2014)
[3] Evans, E. A.; Skalak, R., Mechanics and Thermodynamics of Biomembranes (1980), CRC Press Inc.: CRC Press Inc. Boca Raton
[4] Krüger, T.; Varnik, F.; Raabe, D., Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice boltzmann finite element method, Comput. Math. Appl., 61, 3485-3505 (2011) · Zbl 1225.76231
[5] Macmeccan, R. M.; Clausen, J. R.; Neitzel, G. P.; Aidun, C. K., Simulating deformable particle suspensions using a coupled lattice-boltzmann and finite-element method, J. Fluid Mech., 618, 13-39 (2009) · Zbl 1156.76455
[6] Shrivastava, S.; Tang, J., Large deformation finite element analysis of non-linear viscoelastic membranes with reference to thermoforming, J. Strain Anal. Eng. Des., 28, 31-51 (1993)
[7] Klöppel, T.; Wall, W. A., A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes, Biomech. Model. Mechanobiol., 10, 445-459 (2011)
[8] Skalak, R.; Tozeren, A.; Zarda, R. P.; Chien, S., Strain energy function of red blood cell membranes, Biophys. J., 13, 245-264 (1973)
[9] Bonet, J.; Wood, R. D., Nonlinear Continuum Mechanics for Finite Element Analysis (2008), Cambridge University Press · Zbl 1142.74002
[10] Yeoh, O. H., Characterization of elastic properties of carbon-black-filled rubber vulcanizates, Rubber Chem. Technol., 63, 792-805 (1990)
[11] Dimitrakopoulos, P., Analysis of the variation in the determination of the shear modulus of the erythrocyte membrane: effects of the constitutive law and membrane modeling, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys., 85 (2012)
[12] Sigüenza, J.; Mendez, S.; Nicoud, F., How should the optical tweezers experiment be used to characterize the red blood cell membrane mechanics?, Biomech. Model. Mechanobiol., 16, 1645-1657 (2017)
[13] Discher, D. E.; Boal, D. H.; Boey, S. K., Simulations of the erythrocyte cytoskeleton at large deformation. Micropipette aspiration, Biophys. J., 75, 1584-1597 (1998)
[14] Dao, M.; Lim, C. T.; Suresh, S., Mechanics of the human red blood cell deformed by optical tweezers, J. Mech. Phys. Solids, 51, 2259-2280 (2003)
[15] Dao, M.; Li, J.; Suresh, S., Molecularly based analysis of deformation of spectrin network and human erythrocyte, Mater. Sci. Eng. C, 26, 1232-1244 (2006)
[16] Li, J.; Dao, M.; Lim, C. T.; Suresh, S., Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte, Biophys. J., 88, 3707-3719 (2005)
[17] Pivkin, I. V.; Karniadakis, G. E., Accurate coarse-grained modeling of red blood cells, Phys. Rev. Lett., 101, Article 1 pp. (2008)
[18] Dupin, M. M.; Halliday, I.; Care, C. M.; Alboul, L.; Munn, L. L., Modeling the flow of dense suspensions of deformable particles in three dimensions, Phys. Rev. E, 75 (2007)
[19] Fedosov, D. A.; Caswell, B.; Karniadakis, G. E., A multiscale red blood cell model with accurate mechanics, rheology, dynamics, Biophys. J., 98, 2215-2225 (2010)
[20] Reasor, D. A.; Clausen, J. R.; Aidun, C. K., Coupling the lattice-boltzmann and spectrin-link methods for the direct numerical simulation of cellular blood flow, Int. J. Numer. Methods Fluids, 68, 767-781 (2011) · Zbl 1242.92020
[21] Závodszky, G.; van Rooij, B.; Azizi, V.; Hoekstra, A., Cellular level in-silico modeling of blood rheology with an improved material model for red blood cells, Front. Physiol., 8, 1-14 (2017)
[22] Zavodszky, G.; van Rooij, B.; Azizi, V.; Alowayyed, S.; Hoekstra, A., Hemocell: a high-performance microscopic cellular library, Proc. Comput. Sci., 108, 159-165 (2017)
[23] Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E. M., The Lattice Boltzmann Method (2017) · Zbl 1362.76001
[24] Peskin, C. S., Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10, 252-271 (1972) · Zbl 0244.92002
[25] Liu, T.; Bouaziz, S.; Kavan, L., Quasi-newton methods for real-time simulation of hyperelastic materials, ACM Trans. Graph., 36 (2017)
[26] Bouaziz, S.; Martin, S.; Liu, T.; Kavan, L.; Pauly, M., Projective dynamics: fusing constraint projections for fast simulation, ACM Trans. Graph., 33, Article 154 pp. (2014) · Zbl 1396.65036
[27] Bathe, K. J.; Cimento, A. P., Some practical procedures for the solution of nonlinear finite element equations, Comput. Methods Appl. Mech. Eng., 22, 59-85 (1980) · Zbl 0435.73080
[28] Fish, J.; Pandheeradi, M.; Belsky, V., An efficient multilevel solution scheme for large scale non-linear systems, Int. J. Numer. Methods Eng., 38, 1597-1610 (1995) · Zbl 0821.73067
[29] Quarteroni, A., Numerical Models for Differential Problems (2009), Springer-Verlag Mailand · Zbl 1170.65326
[30] Palabos (2017)
[31] Ota, K.; Suzuki, K.; Inamuro, T., Lift generation by a two-dimensional symmetric flapping wing: immersed boundary-lattice boltzmann simulations, Fluid Dyn. Res., 44 (2012) · Zbl 1309.76167
[32] Sifakis, E.; Barbic, J., Fem simulation of 3d deformable solids: a practitioner’s guide to theory, discretization and model reduction, (ACM SIGGRAPH 2012 Courses. ACM SIGGRAPH 2012 Courses, SIGGRAPH ’12 (2012), ACM)
[33] Liu, T., Towards Real-Time Simulation of Hyperelastic Materials (2018), University of Pennsylvania, PhD thesis
[34] Botsch, M.; Kobbelt, L.; Pauly, M.; Alliez, P.; Levy, B., Polygon Mesh Processing (2010), A K Peters
[35] Guckenberger, A.; Schraml, M. P.; Chen, P. G.; Leonetti, M.; Gekle, S., On the bending algorithms for soft objects in flows, Comput. Phys. Commun., 207, 1-23 (2016) · Zbl 1375.76128
[36] J. Bender, M. Müller, M. Macklin, Position-based simulation methods in computer graphics, 2017.; J. Bender, M. Müller, M. Macklin, Position-based simulation methods in computer graphics, 2017.
[37] Valanis, K. C.; Landel, R. F., The strain-energy function of a hyperelastic material in terms of the extension ratios, J. Appl. Phys., 38, 2997-3002 (1967)
[38] Xu, H.; Sin, F.; Zhu, Y.; Barbič, J., Nonlinear material design using principal stretches, ACM Trans. Graph., 34, Article 75 pp. (2015)
[39] Drucker, D. C., A Definition of Stable Inelastic Material (1957), Brown University, Technical Report · Zbl 0088.17103
[40] Li, J.; Liu, T.; Kavan, L., Laplacian damping for projective dynamics, (14th Workshop on Virtual Reality Interaction and Physical Simulation. 14th Workshop on Virtual Reality Interaction and Physical Simulation, VRIPHYS2018 (2018))
[41] Müller, M.; Heidelberger, B.; Hennix, M.; Ratcliff, J., Position based dynamics, J. Vis. Commun. Image Represent., 18, 109-118 (2007)
[42] Semblat, J., Rheological interpretation of rayleigh damping, J. Sound Vib., 206, 741-744 (1997)
[43] Nocedal, J.; Wright, S. J., Numerical Optimization (2006) · Zbl 1104.65059
[44] Hardy, J.; Pomeau, Y.; de Pazzis, O., Time evolution of a two-dimensional model system. I. Invariant states and time correlation functions, J. Math. Phys., 14, 1746-1759 (1973)
[45] Frisch, U.; Hasslacher, B.; Pomeau, Y., Lattice-gas automata for the navier-stokes equation, Phys. Rev. Lett., 56, 1505-1508 (1986)
[46] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 511-525 (1954) · Zbl 0055.23609
[47] Shan, X.; Chen, H., Lattice boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, 47, 1815-1819 (1993)
[48] Peskin, C. S., The immersed boundary method, Acta Numer., 11, 479-517 (2002) · Zbl 1123.74309
[49] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261 (2005) · Zbl 1117.76049
[50] Wang, Z.; Fan, J.; Luo, K., Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles, Int. J. Multiph. Flow, 34, 283-302 (2008)
[51] Shapeop (2014)
[52] Mills, J. P.; Qie, L.; Dao, M.; Lim, C. T.; Suresh, S., Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers, Mech. Chem. Biosyst., 1, 169-180 (2004)
[53] Suresh, S.; Spatz, J.; Mills, J.; Micoulet, A.; Dao, M.; Lim, C.; Beil, M.; Seufferlein, T., Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria, Acta Biomater., 1, 15-30 (2005)
[54] Henon, S.; Lenormand, G.; Richert, A., A new determination of the shear modulus of the human erythrocyte, Biophys. J., 76, 1145-1151 (1999)
[55] Hochmuth, R. M.; Worthy, P. R.; Evans, E. A., Red cell extensional recovery and the determination of membrane viscosity, Biophys. J., 26, 101-114 (1979)
[56] Yao, W.; Wen, Z.; Yan, Z.; Sun, D.; Ka, W.; Xie, L.; Chien, S., Low viscosity ektacytometry and its validation tested by flow chamber, J. Biomech., 34, 1501-1509 (2001)
[57] Krüger, T., Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells under Shear (2012), Vieweg+Teubner Verlag
[58] Fischer, T. M.; Stohr-Lissen, M.; Schmid-Schonbein, H., The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow, Science, 202, 894-896 (1978)
[59] Fischer, T. M., Tank-tread frequency of the red cell membrane: dependence on the viscosity of the suspending medium, Biophys. J., 93, 2553-2561 (2007)
[60] Tran-Son-Tay, R.; Sutera, S. P.; Rao, P. R., Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion, Biophys. J., 46, 65-72 (1984)
[61] Abkarian, M.; Faivre, M.; Viallat, A., Swinging of red blood cells under shear flow, Phys. Rev. Lett., 98, 2-5 (2007)
[62] Tomaiuolo, G.; Barra, M.; Preziosi, V.; Cassinese, A.; Rotoli, B.; Guido, S., Microfluidics analysis of red blood cell membrane viscoelasticity, Lab Chip, 11, 449-454 (2011)
[63] Tsukada, K.; Sekizuka, E.; Oshio, C.; Minamitani, H., Direct measurement of erythrocyte deformability in diabetes mellitus with a transparent microchannel capillary model and high-speed video camera system, Microvasc. Res., 61, 231-239 (2001)
[64] Suzuki, Y.; Tateishi, N.; Soutani, M.; Maeda, N., Deformation of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformability, Microcirculation, 3, 49-57 (1996)
[65] Blumers, A. L.; Tang, Y.-H.; Li, Z.; Li, X.; Karniadakis, G. E., Gpu-accelerated red blood cells simulations with transport dissipative particle dynamics, Comput. Phys. Commun., 217, 171-179 (2017)
[66] Rossinelli, D.; Tang, Y.-H.; Lykov, K.; Alexeev, D.; Bernaschi, M.; Hadjidoukas, P.; Bisson, M.; Joubert, W.; Conti, C.; Karniadakis, G.; Fatica, M.; Pivkin, I.; Koumoutsakos, P., The in-silico lab-on-a-chip: petascale and high-throughput simulations of microfluidics at cell resolution, (Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’15 (2015), ACM), 1-12
[67] Mountrakis, L.; Lorenz, E.; Malaspinas, O.; Alowayyed, S.; Chopard, B.; Hoekstra, A. G., Parallel performance of an ib-lbm suspension simulation framework, J. Comput. Sci., 9, 45-50 (2015)
[68] Zhao, H.; Shaqfeh, E. S.G., Shear-induced platelet margination in a microchannel, Phys. Rev. E, 83, Article 061924 pp. (2011)
[70] Lanotte, L.; Mauer, J.; Mendez, S.; Fedosov, D. A.; Fromental, J.-M.; Claveria, V.; Nicoud, F.; Gompper, G.; Abkarian, M., Red cells’ dynamic morphologies govern blood shear thinning under microcirculatory flow conditions, Proc. Natl. Acad. Sci., 113, 13289-13294 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.