×

Less is often more: applied inverse problems using \(hp\)-forward models. (English) Zbl 1453.74080

Summary: To solve an applied inverse problem, a numerical forward model for the problem’s physics is required. Commonly, the finite element method is employed with discretizations consisting of elements with variable size \(h\) and polynomial degree \(p\). Solutions to \(hp\)-forward models are known to converge exponentially by simultaneously decreasing \(h\) and increasing \(p\). On the other hand, applied inverse problems are often ill-posed and their minimization rate exhibits uncertainty. Presently, the behavior of applied inverse problems incorporating \(hp\) elements of differing \(p, h\), and geometry is not fully understood. Nonetheless, recent research suggests that employing increasingly higher-order \(hp\)-forward models (increasing mesh density and \(p)\) decreases reconstruction errors compared to inverse regimes using lower-order \(hp\)-forward models (coarser meshes and lower \(p)\). However, an affirmative or negative answer to following question has not been provided, “Does the use of higher order \(hp\)-forward models in applied inverse problems always result in lower error reconstructions than approaches using lower order \(hp\)-forward models?” In this article we aim to reduce the current knowledge gap and answer the open question by conducting extensive numerical investigations in the context of two contemporary applied inverse problems: elasticity imaging and hydraulic tomography – nonlinear inverse problems with a PDE describing the underlying physics. Our results support a negative answer to the question – i.e. decreasing \(h\) (increasing mesh density), increasing \(p\), or simultaneously decreasing \(h\) and increasing \(p\) does not guarantee lower error reconstructions in applied inverse problems. Rather, there is complex balance between the accuracy of the \(hp\)-forward model, noise, prior knowledge (regularization), Jacobian accuracy, and ill-conditioning of the Jacobian matrix which ultimately contribute to reconstruction errors. As demonstrated herein, it is often more advantageous to use lower-order \(hp\)-forward models than higher-order \(hp\)-forward models in applied inverse problems. These realizations and other counterintuitive behavior of applied inverse problems using \(hp\)-forward models are described in detail herein.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74G75 Inverse problems in equilibrium solid mechanics
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mueller, J. L.; Siltanen, S., Linear and Nonlinear Inverse Problems with Practical Applications (2012), SIAM · Zbl 1262.65124
[2] Chen, Y.; O’Sullivan, J. A.; Politte, D. G.; Evans, J. D.; Han, D.; Whiting, B. R.; Williamson, J. F., Line integral alternating minimization algorithm for dual-energy x-ray ct image reconstruction, IEEE Trans. Med. Imaging, 35, 685-698 (2016)
[3] Hämäläinen, K.; Harhanen, L.; Hauptmann, A.; Kallonen, A.; Niemi, E.; Siltanen, S., Total variation regularization for large-scale x-ray tomography, Int. J. Tomogr. Simul., 25, 1-25 (2014)
[4] Maire, E.; Withers, P. J., Quantitative x-ray tomography, Int. Mater. Rev., 59, 1-43 (2014)
[5] Liu, D.; Smyl, D.; Du, J., A parametric level set-based approach to difference imaging in electrical impedance tomography, IEEE Trans. Med. Imaging, 38, 145-155 (2019)
[6] Liu, D.; Gu, D.; Smyl, D.; Deng, J.; Du, J., B-spline based sharp feature preserving shape reconstruction approach for electrical impedance tomography, IEEE Trans. Med. Imaging (2019)
[7] Trepte, C. J.; Phillips, C. R.; Solà, J.; Adler, A.; Haas, S. A.; Rapin, M.; Böhm, S. H.; Reuter, D. A., Electrical impedance tomography (eit) for quantification of pulmonary edema in acute lung injury, J. Crit. Care, 20, 18 (2015)
[8] Vauhkonen, P., Image Reconstruction in Three-Dimensional Electrical Impedance Tomography (2004), University of Kuopio, Ph.D. thesis
[9] Brown, B., Electrical impedance tomography (EIT): a review, J. Med. Eng. Technol., 27, 97-108 (2003)
[10] Kaipio, J.; Kolehmainen, V.; Somersalo, E.; Vauhkonen, M., Statistical inversion and Monte Carlo sampling methods in EIT, Inverse Probl., 16, 1487-1522 (2000) · Zbl 1044.78513
[11] Saratoon, T.; Tarvainen, T.; Cox, B.; Arridge, S., A gradient-based method for quantitative photoacoustic tomography using the radiative transfer equation, Inverse Probl., 29, Article 075006 pp. (2013) · Zbl 1295.92019
[12] Maslov, K.; Zhang, H. F.; Hu, S.; Wang, L. V., Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries, Opt. Lett., 33, 929-931 (2008)
[13] Arridge, S.; Kaipio, J.; Kolehmainen, V.; Schweiger, M.; Somersalo, E.; Tarvainen, T.; Vauhkonen, M., Approximation errors and model reduction with an application in optical diffusion tomography, Inverse Probl., 22, 175 (2006) · Zbl 1138.65042
[14] Zhang, Y.; Dong, Z.; Phillips, P.; Wang, S.; Ji, G.; Yang, J., Exponential wavelet iterative shrinkage thresholding algorithm for compressed sensing magnetic resonance imaging, Inf. Sci., 322, 115-132 (2015)
[15] Ammari, H.; Kwon, H.; Lee, Y.; Kang, K.; Seo, J. K., Magnetic resonance-based reconstruction method of conductivity and permittivity distributions at the Larmor frequency, Inverse Probl., 31, Article 105001 pp. (2015) · Zbl 1330.78014
[16] Goenezen, S.; Barbone, P.; Oberai, A. A., Solution of the nonlinear elasticity imaging inverse problem: the incompressible case, Comput. Methods Appl. Mech. Eng., 200, 1406-1420 (2011) · Zbl 1228.74032
[17] Gokhale, N. H.; Barbone, P. E.; Oberai, A. A., Solution of the nonlinear elasticity imaging inverse problem: the compressible case, Inverse Probl., 24, Article 045010 pp. (2008) · Zbl 1153.35402
[18] Oberai, A. A.; Gokhale, N. H.; Doyley, M. M.; Bamber, J. C., Evaluation of the adjoint equation based algorithm for elasticity imaging, Phys. Med. Biol., 49, 2955 (2004)
[19] Abdelsalhin, T.; Maselli, A.; Ferrari, V., Solving the relativistic inverse stellar problem through gravitational waves observation of binary neutron stars, Phys. Rev. D, 97, Article 084014 pp. (2018)
[20] Portal, A.; Labazuy, P.; Lénat, J.-F.; Béné, S.; Boivin, P.; Busato, E.; Cârloganu, C.; Combaret, C.; Dupieux, P.; Fehr, F., Inner structure of the Puy de D̂ome volcano: cross-comparison of geophysical models (ert, gravimetry, muon imaging), Geosci. Instrum. Method. Data Syst., 2, 47-54 (2013)
[21] Schueler-Furman, O.; Wang, C.; Bradley, P.; Misura, K.; Baker, D., Progress in modeling of protein structures and interactions, Science, 310, 638-642 (2005)
[22] Smyl, D.; Pour-Ghaz, M.; Seppänen, A., Can electrical imaging be used for complex structural cracking patterns?, Comput. Methods Appl. Mech. Eng. (2017)
[23] Tallman, T.; Gungor, S.; Koo, G.; Bakis, C., On the inverse determination of displacements, strains, and stresses in a carbon nanofiber/polyurethane nanocomposite from conductivity data obtained via electrical impedance tomography, J. Intell. Mater. Syst. Struct., 1-13 (2017)
[24] He, J.; Yuan, F.-G., Lamb wave-based subwavelength damage imaging using the dort-music technique in metallic plates, Struct. Health Monit., 15, 65-80 (2016)
[25] Bull, D.; Helfen, L.; Sinclair, I.; Spearing, S.; Baumbach, T., A comparison of multi-scale 3D X-ray tomographic inspection techniques for assessing carbon fibre composite impact damage, Compos. Sci. Technol., 75, 55-61 (2013)
[26] Saibaba, A. K.; Bakhos, T.; Kitanidis, P. K., A flexible Krylov solver for shifted systems with application to oscillatory hydraulic tomography, SIAM J. Sci. Comput., 35, A3001-A3023 (2013) · Zbl 1288.65041
[27] Illman, W. A.; Liu, X.; Takeuchi, S.; Yeh, T.-C. J.; Ando, K.; Saegusa, H., Hydraulic tomography in fractured granite: Mizunami underground research site, Japan, Water Resour. Res., 45 (2009)
[28] Zhu, J.; Yeh, T.-C. J., Characterization of aquifer heterogeneity using transient hydraulic tomography, Water Resour. Res., 41 (2005)
[29] Liu, D.; Zhao, Y.; Khambampati, A. K.; Seppanen, A.; Du, J., A parametric level set method for imaging multi-phase conductivity using electrical impedance tomography, IEEE Trans. Comput. Imaging, 4, 552-561 (2018)
[30] Ismail, I.; Gamio, J.; Bukhari, S. A.; Yang, W., Tomography for multi-phase flow measurement in the oil industry, Flow Meas. Instrum., 16, 145-155 (2005)
[31] Smyl, D.; Antin, K.-N.; Liu, D.; Bossuyt, S., Coupled digital image correlation and quasi-static elasticity imaging of inhomogeneous orthotropic composite structures, Inverse Probl., 34, Article 124005 pp. (2018) · Zbl 1408.74027
[32] Grediac, M., The use of full-field measurement methods in composite material characterization: interest and limitations, Composites, Part A, Appl. Sci. Manuf., 35, 751-761 (2004)
[33] Oliver, D. S.; Reynolds, A. C.; Liu, N., Inverse Theory for Petroleum Reservoir Characterization and History Matching (2008), Cambridge University Press
[34] Oberai, A. A.; Gokhale, N. H.; Feijóo, G. R., Solution of inverse problems in elasticity imaging using the adjoint method, Inverse Probl., 19, 297 (2003) · Zbl 1171.35490
[35] Kaipio, J.; Somersalo, E., Statistical and Computational Inverse Problems, vol. 160 (2006), Springer Science & Business Media
[36] An, H.-B.; Wen, J.; Feng, T., On finite difference approximation of a matrix-vector product in the Jacobian-free Newton-Krylov method, J. Comput. Appl. Math., 236, 1399-1409 (2011) · Zbl 1258.65049
[37] Carrera, J.; Alcolea, A.; Medina, A.; Hidalgo, J.; Slooten, L. J., Inverse problem in hydrogeology, Hydrogeol. J., 13, 206-222 (2005)
[38] de Munck, J. C.; Faes, T. J.; Heethaar, R. M., The boundary element method in the forward and inverse problem of electrical impedance tomography, IEEE Trans. Biomed. Eng., 47, 792-800 (2000)
[39] Harari, I., A survey of finite element methods for time-harmonic acoustics, Comput. Methods Appl. Mech. Eng., 195, 1594-1607 (2006) · Zbl 1122.76056
[40] Jasak, H.; Jemcov, A.; Tukovic, Z., Openfoam: a c++ library for complex physics simulations, (International Workshop on Coupled Methods in Numerical Dynamics, vol. 1000 (2007), IUC: IUC Dubrovnik, Croatia), 1-20
[41] Surana, K. S.; Reddy, J., The Finite Element Method for Boundary Value Problems: Mathematics and Computations (2016), CRC Press
[42] Lin, Q.; Lin, J., Finite Element Methods: Accuracy and Improvement, vol. 1 (2007), Elsevier
[43] Binev, P.; Dahmen, W.; DeVore, R., Adaptive finite element methods with convergence rates, Numer. Math., 97, 219-268 (2004) · Zbl 1063.65120
[44] Morin, P.; Nochetto, R. H.; Siebert, K. G., Convergence of adaptive finite element methods, SIAM Rev., 44, 631-658 (2002) · Zbl 1016.65074
[45] Geuzaine, C.; Remacle Gmsh, J.-F., A 3-d finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng., 79, 1309-1331 (2009) · Zbl 1176.74181
[46] Hughes, T. J., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (2012), Courier Corporation
[47] Johnson, C., Numerical Solution of Partial Differential Equations by the Finite Element Method (2012), Courier Corporation
[48] Babuška, I.; Banerjee, U.; Osborn, J. E., Survey of meshless and generalized finite element methods: a unified approach, Acta Numer., 12, 1-125 (2003) · Zbl 1048.65105
[49] Idelsohn, S. R.; Onate, E.; Calvo, N.; Del Pin, F., The meshless finite element method, Int. J. Numer. Methods Eng., 58, 893-912 (2003) · Zbl 1035.65129
[50] Oden, J. T.; Duarte, C.; Zienkiewicz, O. C., A new cloud-based hp finite element method, Comput. Methods Appl. Mech. Eng., 153, 117-126 (1998) · Zbl 0956.74062
[51] Duarte, C. A.; Oden, J. T., An hp adaptive method using clouds, Comput. Methods Appl. Mech. Eng., 139, 237-262 (1996) · Zbl 0918.73328
[52] Liu, G.; Dai, K.; Nguyen, T. T., A smoothed finite element method for mechanics problems, Comput. Mech., 39, 859-877 (2007) · Zbl 1169.74047
[53] Grote, M. J.; Schneebeli, A.; Schötzau, D., Discontinuous Galerkin finite element method for the wave equation, SIAM J. Numer. Anal., 44, 2408-2431 (2006) · Zbl 1129.65065
[54] Houston, P.; Schwab, C.; Süli, E., Discontinuous hp-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 39, 2133-2163 (2002) · Zbl 1015.65067
[55] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.; Landis, C. M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Eng., 217, 77-95 (2012) · Zbl 1253.74089
[56] Schrade, D.; Mueller, R.; Xu, B.; Gross, D., Domain evolution in ferroelectric materials: a continuum phase field model and finite element implementation, Comput. Methods Appl. Mech. Eng., 196, 4365-4374 (2007) · Zbl 1173.74329
[57] Goddeke, D.; Buijssen, S. H.; Wobker, H.; Turek, S., Gpu acceleration of an unmodified parallel finite element Navier-Stokes solver, (High Performance Computing & Simulation, 2009, HPCS’09, International Conference on (2009), IEEE), 12-21
[58] Paszyński, M.; Kurtz, J.; Demkowicz, L., Parallel, fully automatic hp-adaptive 2d finite element package, Comput. Methods Appl. Mech. Eng., 195, 711-741 (2006) · Zbl 1093.65113
[59] Puzyrev, V.; Koldan, J.; de la Puente, J.; Houzeaux, G.; Vázquez, M.; Cela, J. M., A parallel finite-element method for three-dimensional controlled-source electromagnetic forward modelling, Geophys. J. Int., 193, 678-693 (2013)
[60] Babuška, I.; Suri, M., The hp version of the finite element method with quasiuniform meshes, ESAIM: Math. Model. Numer. Anal., 21, 199-238 (1987) · Zbl 0623.65113
[61] Kaipio, J.; Somersalo, E., Statistical and Computational Inverse Problems (2005), Springer: Springer New York · Zbl 1068.65022
[62] Ledger, P., hp-finite element discretisation of the electrical impedance tomography problem, Comput. Methods Appl. Mech. Eng., 225, 154-176 (2012) · Zbl 1253.78044
[63] Yeo, K.; Hwang, Y.; Liu, X.; Kalagnanam, J., Development of hp-inverse model by using generalized polynomial chaos, Comput. Methods Appl. Mech. Eng., 347, 1-20 (2019) · Zbl 1440.65014
[64] Bangerth, W., A framework for the adaptive finite element solution of large-scale inverse problems, SIAM J. Sci. Comput., 30, 2965-2989 (2008) · Zbl 1178.65133
[65] Alexe, M.; Sandu, A., Space-time adaptive solution of inverse problems with the discrete adjoint method, J. Comput. Phys., 270, 21-39 (2014) · Zbl 1349.65409
[66] Isaacson, D., Distinguishability of conductivities by electric current computed tomography, IEEE Trans. Med. Imaging, 5, 91-95 (1986)
[67] Dobson, D. C., Estimates on resolution and stabilization for the linearized inverse conductivity problem, Inverse Probl., 8, 71 (1992) · Zbl 0747.35050
[68] Cheney, M.; Isaacson, D.; Newell, J. C.; Simske, S.; Goble, J., Noser: an algorithm for solving the inverse conductivity problem, Int. J. Imaging Syst. Technol., 2, 66-75 (1990)
[69] MacMillan, H. R.; Manteuffel, T. A.; McCormick, S. F., First-order system least squares and electrical impedance tomography, SIAM J. Numer. Anal., 42, 461-483 (2004) · Zbl 1073.78020
[70] Winkler, R.; Rieder, A., Resolution-controlled conductivity discretization in electrical impedance tomography, SIAM J. Imaging Sci., 7, 2048-2077 (2014) · Zbl 1309.65130
[71] Borcea, L.; Druskin, V.; Vasquez, F. G.; Mamonov, A., Resistor network approaches to electrical impedance tomography, (Inverse Problems and Applications: Inside Out II. Inverse Problems and Applications: Inside Out II, Math. Sci. Res. Inst. Publ, vol. 60 (2011)), 55-118 · Zbl 1316.65096
[72] Ameur, H. B.; Kaltenbacher, B., Regularization of parameter estimation by adaptive discretization using refinement and coarsening indicators, J. Inverse Ill-Posed Probl., 10, 561-583 (2002) · Zbl 1038.35156
[73] Mathé, P.; Pereverzev, S. V., Optimal discretization of inverse problems in Hilbert scales. regularization and self-regularization of projection methods, SIAM J. Numer. Anal., 38, 1999-2021 (2001) · Zbl 1049.65046
[74] Kirsch, A., An Introduction to the Mathematical Theory of Inverse Problems, vol. 120 (2011), Springer Science & Business Media · Zbl 1213.35004
[75] Koponen, J.; Huttunen, T.; Tarvainen, T.; Kaipio, J. P., Bayesian approximation error approach in full-wave ultrasound tomography, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 61, 1627-1637 (2014)
[76] Nissinen, A.; Heikkinen, L.; Kaipio, J., The Bayesian approximation error approach for electrical impedance tomography—experimental results, Meas. Sci. Technol., 19, Article 015501 pp. (2007)
[77] Tarvainen, T.; Pulkkinen, A.; Cox, B. T.; Kaipio, J. P.; Arridge, S. R., Bayesian image reconstruction in quantitative photoacoustic tomography, IEEE Trans. Med. Imaging, 32, 2287-2298 (2013)
[78] Smyl, D.; Bossuyt, S.; Liu, D., Stacked elasticity imaging approach for visualizing defects in the presence of background inhomogeneity, J. Eng. Mech. (2018)
[79] Bonnet, M.; Constantinescu, A., Inverse problems in elasticity, Inverse Probl., 21, R1 (2005) · Zbl 1070.35118
[80] Richards, M. S.; Barbone, P. E.; Oberai, A. A., Quantitative three-dimensional elasticity imaging from quasi-static deformation: a phantom study, Phys. Med. Biol., 54, 757 (2009)
[81] Kallel, F.; Bertrand, M., Tissue elasticity reconstruction using linear perturbation method, IEEE Trans. Med. Imaging, 15, 299-313 (1996)
[82] Ophir, J.; Cespedes, I.; Ponnekanti, H.; Yazdi, Y.; Li, X., Elastography: a quantitative method for imaging the elasticity of biological tissues, Ultrason. Imag., 13, 111-134 (1991)
[83] Vilhunen, T.; Kaipio, J.; Vauhkonen, P.; Savolainen, T.; Vauhkonen, M., Simultaneous reconstruction of electrode contact impedances and internal electrical properties: I. Theory, Meas. Sci. Technol., 13, 1848 (2002)
[84] Martins, J.; Sturdza, P.; Alonso, J., The connection between the complex-step derivative approximation and algorithmic differentiation, (39th Aerospace Sciences Meeting and Exhibit (2001)), 921
[85] Martins, J. R.; Sturdza, P.; Alonso, J. J., The complex-step derivative approximation, ACM Trans. Math. Softw., 29, 245-262 (2003) · Zbl 1072.65027
[86] Broyden, C. G., A class of methods for solving nonlinear simultaneous equations, Math. Comput., 19, 577-593 (1965) · Zbl 0131.13905
[87] Loke, M. H.; Barker, R., Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method 1, Geophys. Prospect., 44, 131-152 (1996)
[88] Allgower, E. L.; Georg, K., Numerical Continuation Methods: An Introduction, vol. 13 (2012), Springer Science & Business Media
[89] Battiti, R., First- and second-order methods for learning: between steepest descent and Newton’s method, Neural Comput., 4, 141-166 (1992)
[90] Gottlieb, J.; Dietrich, P., Identification of the permeability distribution in soil by hydraulic tomography, Inverse Probl., 11, 353 (1995) · Zbl 0821.35146
[91] Cardiff, M.; Barrash, W., 3-d transient hydraulic tomography in unconfined aquifers with fast drainage response, Water Resour. Res., 47 (2011)
[92] Ginting, V.; Lin, G.; Liu, J., On application of the weak Galerkin finite element method to a two-phase model for subsurface flow, J. Sci. Comput., 66, 225-239 (2016) · Zbl 1381.76168
[93] Masud, A.; Hughes, T. J., A stabilized mixed finite element method for Darcy flow, Comput. Methods Appl. Mech. Eng., 191, 4341-4370 (2002) · Zbl 1015.76047
[94] Liu, J.; Sadre-Marandi, F.; Wang, Z., Darcylite: a matlab toolbox for Darcy flow computation, Proc. Comput. Sci., 80, 1301-1312 (2016)
[95] Vauhkonen, P.; Vauhkonen, M.; Savolainen, T.; Kaipio, J., Three-dimensional electrical impedance tomography based on the complete electrode model, IEEE Trans. Biomed. Eng., 46, 1150-1160 (1999)
[96] Benning, M.; Burger, M., Modern regularization methods for inverse problems, Acta Numer., 27, 1-111 (2018) · Zbl 1431.65080
[97] González, G.; Kolehmainen, V.; Seppänen, A., Isotropic and anisotropic total variation regularization in electrical impedance tomography, Comput. Math. Appl. (2017) · Zbl 1382.92174
[98] Kaipio, J. P.; Kolehmainen, V.; Vauhkonen, M.; Somersalo, E., Inverse problems with structural prior information, Inverse Probl., 15, 713 (1999) · Zbl 0949.65144
[99] Lassas, M.; Siltanen, S., Can one use total variation prior for edge-preserving Bayesian inversion?, Inverse Probl., 20, 1537 (2004) · Zbl 1062.62260
[100] Hansen, P. C.; O’Leary, D. P., The use of the l-curve in the regularization of discrete ill-posed problems, SIAM J. Sci. Comput., 14, 1487-1503 (1993) · Zbl 0789.65030
[101] Kaipio, J.; Somersalo, E., Statistical inverse problems: discretization, model reduction and inverse crimes, J. Comput. Appl. Math., 198, 493-504 (2007) · Zbl 1101.65008
[102] Hansen, P. C., The l-Curve and Its Use in the Numerical Treatment of Inverse Problems (1999)
[103] Yeh, T.-C. J.; Liu, S., Hydraulic tomography: development of a new aquifer test method, Water Resour. Res., 36, 2095-2105 (2000)
[104] Calvetti, D.; Morigi, S.; Reichel, L.; Sgallari, F., Tikhonov regularization and the l-curve for large discrete ill-posed problems, J. Comput. Appl. Math., 123, 423-446 (2000) · Zbl 0977.65030
[105] Bohling, G. C.; Butler, J. J., Inherent limitations of hydraulic tomography, Groundwater, 48, 809-824 (2010)
[106] Illman, W. A.; Craig, A. J.; Liu, X., Practical issues in imaging hydraulic conductivity through hydraulic tomography, Groundwater, 46, 120-132 (2008)
[107] Smyl, D.; Bossuyt, S.; Ahmad, W.; Valilov, A.; Liu, D., An overview of 38 least squares-based frameworks for structural damage tomography, Struct. Health Monit. (2019)
[108] Burger, M.; Korolev, Y.; Rasch, J., Convergence rates and structure of solutions of inverse problems with imperfect forward models, Inverse Probl., 35, Article 024006 pp. (2019) · Zbl 1408.49033
[109] Goodfellow, I.; Bengio, Y.; Courville, A., Deep Learning (2016), MIT Press · Zbl 1373.68009
[110] Kannan, R.; Hendry, S.; Higham, N. J.; Tisseur, F., Detecting the causes of ill-conditioning in structural finite element models, Comput. Struct., 133, 79-89 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.