×

A mathematical model for image saturation with an application to the restoration of solar images via adaptive sparse deconvolution. (English) Zbl 1458.94032

Summary: In this paper we introduce a mathematical model of the image saturation phenomenon occurring in a charged coupled device (CCD), and we propose a novel computational method for restoring saturated images acquired by the atmospheric imaging assembly (AIA) telescope. The mathematical model takes into account both primary saturation, when the photon-induced charge reaches the CCD full well capacity, and the blooming effect, when the excess charge flows into adjacent pixels. The restoration of AIA saturated images is then formulated as an inverse problem with a forward operator encoding the standard diffraction of light rays by a convolution, the primary saturation by an upper limit to the number of photons and the blooming effect by the conservation of the photon-induced charge spilled over adjacent pixels. As a result of this theoretical formulation we propose an adaptive \(\ell_1\) regularized inversion method improving the desaturation capabilities of the existing SE-DESAT method [S. Guastavino et al. “Desaturating SDO/AIA observations of solar flaring storms”, Astrophys. J. 882, No. 2, Paper No. 109 , 12 p. (2019; doi:10.3847/1538-4357/ab35d8)]. We prove that this method has the consistency estimation property also in the case that a fixed unknown background is considered. We test the adaptive method both in the case of synthetic and real data, comparing the performance with the one of the SE-DESAT method, showing that the proposed method avoids edge effects and artifacts in reconstructions even when the background solar activity is particularly intense.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
62J07 Ridge regression; shrinkage estimators (Lasso)

Software:

glmnet
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Benvenuto F and Piana M 2014 Regularization of multiplicative iterative algorithms with nonnegative constraint Inverse Problems30 035012 · Zbl 1368.65083 · doi:10.1088/0266-5611/30/3/035012
[2] Benvenuto F, Piana M, Campi C and Massone A 2018 A hybrid supervised/unsupervised machine learning approach to solar flare prediction Astrophys. J.853 90 · doi:10.3847/1538-4357/aaa23c
[3] Benvenuto F, Schwartz R, Piana M and Massone A 2013 Expectation maximization for hard x-ray count modulation profiles Astron. Astrophys.555 A61 · doi:10.1051/0004-6361/201321295
[4] Bertero M, Boccacci P, Talenti G, Zanella R and Zanni L 2010 A discrepancy principle for Poisson data Inverse Problems26 105004 · Zbl 1200.62067 · doi:10.1088/0266-5611/26/10/105004
[5] Bertero M et alIterative Image Reconstruction: A Point of View
[6] Candes E J, Wakin M B and Boyd S P 2008 Enhancing sparsity by reweighted 1 minimization J. Fourier Anal. Appl.14 877-905 · Zbl 1176.94014 · doi:10.1007/s00041-008-9045-x
[7] Choi M 2006 A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter IEEE Trans. Geosci. Remote Sens.44 1672-82 · doi:10.1109/TGRS.2006.869923
[8] Friedman J, Hastie T and Tibshirani R 2010 Regularization paths for generalized linear models via coordinate descent J. Stat. Softw.33 1 · doi:10.18637/jss.v033.i01
[9] Garcia D 2010 Robust smoothing of gridded data in one and higher dimensions with missing values Comput. Stat. Data Anal.54 1167-78 · Zbl 1277.62036 · doi:10.1016/j.csda.2009.09.020
[10] Grigis P, Su Y and Weber M 2012 AIA PSF characterization and image deconvolution SDO documentation http://Imsal.com/sdodocs
[11] Guastavino S and Benvenuto F 2019 A consistent and numerically efficient variable selection method for sparse Poisson regression with applications to learning and signal recovery Stat. Comput.29 501-16 · Zbl 1430.62078 · doi:10.1007/s11222-018-9819-1
[12] Guastavino S, Piana M, Massone A, Schwartz R and Benvenuto F 2019 Desaturating SDO/AIA observations of solar flaring storms Astrophys. J.882 109 · doi:10.3847/1538-4357/ab35d8
[13] Hu J, Gallo O, Pulli K and Sun X 2013 Hdr deghosting: how to deal with saturation? Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition 1163-70
[14] Hunt X J, Reynaud-Bouret P, Rivoirard V, Sansonnet L and Willett R 2018 A data-dependent weighted lasso under Poisson noise IEEE Trans. Inf. Theory65 1589-613 · Zbl 1432.62222 · doi:10.1109/TIT.2018.2869578
[15] Ivanoff S, Picard F and Rivoirard V 2016 Adaptive lasso and group-lasso for functional Poisson regression J. Mach. Learn. Res.17 1-46 · Zbl 1360.62398
[16] Lemen J R et al 2011 The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO) The Solar Dynamics Observatory (Berlin: Springer) pp 17-40 · doi:10.1007/978-1-4614-3673-7_3
[17] Leung Y, Liu J and Zhang J 2013 An improved adaptive intensity-hue-saturation method for the fusion of remote sensing images IEEE Trans. Geosci. Remote Sens. Lett.11 985-9 · doi:10.1109/LGRS.2013.2284282
[18] Pesnell W D, Thompson B J and Chamberlin P 2011 The solar dynamics observatory (SDO) The Solar Dynamics Observatory (Berlin: Springer) pp 3-15 · doi:10.1007/978-1-4614-3673-7_2
[19] Piana M, Campi C, Benvenuto F, Guastavino S and Massone A M 2019 Flare forecasting and feature ranking using SDO/HMI data Nuovo Cimento C 42 4 · doi:10.1393/ncc/i2019-19030-1
[20] Poduval B, DeForest C E, Schmelz J T and Pathak S 2013 Point-spread functions for the extreme-ultraviolet channels OFSDO/AIA telescopes Astrophys. J.765 144 · doi:10.1088/0004-637x/765/2/144
[21] Schwartz R A, Torre G, Massone A M and Piana M 2015 Desat: a solar software tool for image de-saturation in the atmospheric image assembly onboard the solar dynamics observatory Astron. Comput.13 117-23 · doi:10.1016/j.ascom.2015.10.006
[22] Schwartz R A, Torre G and Piana M 2014 Systematic de-saturation of images from the atmospheric imaging assembly in the solar dynamics observatory Astrophys. J.793 L23 · doi:10.1088/2041-8205/793/2/l23
[23] Staglianò A, Boccacci P and Bertero M 2011 Analysis of an approximate model for Poisson data reconstruction and a related discrepancy principle Inverse Problems27 125003 · Zbl 1229.62004 · doi:10.1088/0266-5611/27/12/125003
[24] Tibshirani R 1996 Regression shrinkage and selection via the lasso J. R. Stat. Soc. B 58 267-88 · Zbl 0850.62538 · doi:10.1111/j.2517-6161.1996.tb02080.x
[25] Torre G, Schwartz R A, Benvenuto F, Massone A M and Piana M 2015 Inverse diffraction for the atmospheric imaging assembly in the solar dynamics observatory Inverse Problems31 095006 · Zbl 1328.85004 · doi:10.1088/0266-5611/31/9/095006
[26] Wang G, Garcia D, Liu Y, De Jeu R and Johannes Dolman A 2012 A three-dimensional gap filling method for large geophysical datasets: application to global satellite soil moisture observations Environ. Model. Softw.30 139-42 · doi:10.1016/j.envsoft.2011.10.015
[27] Zou H 2006 The adaptive lasso and its oracle properties J. Am. Stat. Assoc.101 1418-29 · Zbl 1171.62326 · doi:10.1198/016214506000000735
[28] Zou H and Zhang H H 2009 On the adaptive elastic-net with a diverging number of parameters Ann. Stat.37 1733 · Zbl 1168.62064 · doi:10.1214/08-aos625
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.