×

Two-dimensional \(hp\) adaptive finite element spaces for mixed formulations. (English) Zbl 07313663

Summary: One important characteristic of mixed finite element methods is their ability to provide accurate and locally conservative fluxes, an advantage over standard \(H^1\)-finite element discretizations. However, the development of \(p\) or \(h p\) adaptive strategies for mixed formulations presents a challenge in terms of code complexity for the construction of \(\mathbf{H}(d i v)\)-conforming shape functions of high order on non-conforming meshes, and compatibility verification of the approximation spaces for primal and dual variables \((i n f - s u p\) condition). In the present paper, a methodology is presented for the assembly of such approximation spaces based on quadrilateral and triangular meshes. In order to validate the computational implementations, and to show their consistent applications to mixed formulations, elliptic model problems are simulated to show optimal convergence rates for \(h\) and \(p\) refinements, using uniform and non-uniform (non-conformal) settings for a problem with smooth solution, and using adaptive \(h p\)-meshes for the approximation of a solution with strong gradients. Results for similar simulations using \(H^1\)-conforming formulation are also presented, and both methods are compared in terms of accuracy and required number of degrees of freedom using static condensation.

MSC:

76-XX Fluid mechanics
65-XX Numerical analysis

Software:

HP90
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abbogast, T.; Dawson, C. N.; Keenan, P. T.; Weeler, M. F.; Yotov, I., Enhanced cell-centered finite differences for elliptic equations on general geometry, SIAM J. Sci. Comput., 19, 2, 404-425 (1998) · Zbl 0947.65114
[2] Brezzi, F.; Douglas, J.; Marini, L. D., Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47, 217-235 (1985) · Zbl 0599.65072
[3] Brezzi, F.; Fortin, M., (Mixed and Hybrid Finite Element Methods. Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15 (1991), Springer-Verlag: Springer-Verlag New York) · Zbl 0788.73002
[4] Calle, J. L.D.; Devloo, P. R.B.; Gomes, S. M., Implementation of continuous hp-adaptive finite element spaces without limitations on hanging sides and distribution of approximation orders, Comput. Math. Appl., 70, 5, 1051-1069 (2015) · Zbl 1443.65323
[5] Demkowicz, L., (Boffi, D.; Gastaldi, L., Mixed Finite Elements Compatibility Conditions, and Applications (2008), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, Berlin), 101-156
[6] Demkowicz, L.; Gerdes, K.; Schwab, C.; Bajer, A.; Walsh, T., HP90: A general and flexible Fortran 90 hp-FE code, Comput. Vis. Sci., 1, 145-163 (1998) · Zbl 0912.68014
[7] Demkowicz, L.; Kurtz, J.; Pardo, D.; Paszynski, M.; Rachowicz, W.; Zdunek, A., Computing With hp-Adaptive Finite Elements, Vol. 2 (2008), Chapman & Hall/CRC Press: Chapman & Hall/CRC Press Boca Raton · Zbl 1148.65001
[8] Demkowicz, L.; Rachowicz, W.; Devloo, P. R.B., A fully automatic hp-adaptivity, J. Sci. Comput., 17, 117-142 (2002) · Zbl 0999.65121
[9] Devloo, P. R.B.; Bravo, C. M.A.; Rylo, E. C., Systematic and generic construction of shape functions for p-adaptive meshes of multidimensional finite elements, Comput. Methods Appl. Mech. Engrg., 198, 1716-1725 (2009) · Zbl 1227.65112
[10] Devloo, P. R.B.; Farias, A. M.; Gomes, S. M.; Gonçalves, J. L., Application of a combined continuous-discontinuous Galerkin finite element method for the solution of the Girkmann problem, Comput. Math. Appl., 65, 1786-1794 (2013) · Zbl 1391.74243
[11] Farias, A. M., Novas formulações de elementos finitos e simulações multifísicas (2014), IMECC-Unicamp, (Doctorate Thesis)
[12] Nedelec, J. C., A new family of mixed finite elements in R3, Numer. Math., 50, 57-81 (1986) · Zbl 0625.65107
[13] Qiu, W.; Demkowicz, L., Mixed hp-finite element method for linear elasticity with weakly imposed symmetry III: stability analysis, SIAM J. Numer. Anal., 49, 2, 619-641 (2011) · Zbl 1328.74082
[14] Raviart, P. A.; Thomas, J. M., (A mixed finite element method for 2nd order elliptic problems. A mixed finite element method for 2nd order elliptic problems, Lecture Notes in Math., vol. 606 (1977)), 292-315 · Zbl 0362.65089
[15] Rognes, M. E.; Kirby, R. C.; Logg, A., Efficient assembly of H(div) and H(curl) conforming finite elements, SIAM J. Sci. Comput., 31, 6, 4130-4151 (2009) · Zbl 1206.65248
[16] Siqueira, D.; Devloo, P. R.B.; Gomes, S. M., A new procedure for the construction of hierarchical high order Hdiv and Hcurl finite element spaces, J. Comput. Appl. Math., 240, 204-214 (2013) · Zbl 1255.65209
[17] Šolí n, P.; Červený, J.; Doležel, I., Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM, Math. Comput. Simul., 77, 117-132 (2008) · Zbl 1135.65394
[18] Šolín, P.; Segeth, K.; Dolezel, I., Higher-Order Finite Element Methods (2004), Chapman - Hall/CRC · Zbl 1032.65132
[19] Zaglamayr, S., Hight order finite element methods for electromagnetic field computation (2006), Johannes Kepler Universität Linz, (Ph.D. Thesis)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.