×

Time integration of tree tensor networks. (English) Zbl 1461.65203

Summary: Dynamical low-rank approximation by tree tensor networks is studied for the data-sparse approximation of large time-dependent data tensors and unknown solutions to tensor differential equations. A time integration method for tree tensor networks of prescribed tree rank is presented and analyzed. It extends the known projector-splitting integrators for dynamical low-rank approximation by matrices and rank-constrained Tucker tensors and is shown to inherit their favorable properties. The integrator is based on recursively applying the low-rank Tucker tensor integrator. In every time step, the integrator climbs up and down the tree: it uses a recursion that passes from the root to the leaves of the tree for the construction of initial value problems on subtree tensor networks using appropriate restrictions and prolongations, and another recursion that passes from the leaves to the root for the update of the factors in the tree tensor network. The integrator reproduces given time-dependent tree tensor networks of the specified tree rank exactly and is robust to the typical presence of small singular values in matricizations of the connection tensors, in contrast to standard integrators applied to the differential equations for the factors in the dynamical low-rank approximation by tree tensor networks.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
65L70 Error bounds for numerical methods for ordinary differential equations
15A69 Multilinear algebra, tensor calculus

Software:

TensorToolbox
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] P.-A. Absil and I. V. Oseledets, Low-rank retractions: A survey and new results, Comput. Optim. Appl., 62 (2015), pp. 5-29. · Zbl 1334.90202
[2] B. W. Bader, T. G. Kolda, et al., MATLAB Tensor Toolbox Version 2.6, February 2015, http://www.sandia.gov/ tgkolda/TensorToolbox/.
[3] D. Bauernfeind and M. Aichhorn, Time dependent variational principle for tree tensor networks, SciPost Phys., 8 (2020), 024.
[4] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253-1278, https://doi.org/10.1137/S0895479896305696. · Zbl 0962.15005
[5] L. Einkemmer and C. Lubich, A low-rank projector-splitting integrator for the Vlasov-Poisson equation, SIAM J. Sci. Comput., 40 (2018), pp. B1330-B1360, https://doi.org/10.1137/18M116383X. · Zbl 1408.35187
[6] A. Falcó, W. Hackbusch, and A. Nouy, Geometric Structures in Tensor Representations (Final Release), arXiv preprint, arXiv:1505.03027, 2015.
[7] A. Falcó, W. Hackbusch, and A. Nouy, Tree-based tensor formats, SeMA J., (2018), pp. 1-15.
[8] W. Hackbusch, Multigrid Methods and Applications, Springer Ser. Comput. Math. 4, Springer-Verlag, Berlin, 1985, https://doi.org/10.1007/978-3-662-02427-0. · Zbl 0595.65106
[9] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer, 2012. · Zbl 1244.65061
[10] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, and F. Verstraete, Unifying time evolution and optimization with matrix product states, Phys. Rev. B, 94 (2016), 165116.
[11] U. Helmke and J. B. Moore, Optimization and Dynamical Systems, Commun. Control Engrg. Ser., Springer-Verlag, London, 1994, https://doi.org/10.1007/978-1-4471-3467-1. · Zbl 0984.49001
[12] E. Kieri, C. Lubich, and H. Walach, Discretized dynamical low-rank approximation in the presence of small singular values, SIAM J. Numer. Anal., 54 (2016), pp. 1020-1038, https://doi.org/10.1137/15M1026791. · Zbl 1336.65119
[13] B. Kloss, Y. B. Lev, and D. R. Reichman, Studying dynamics in two-dimensional quantum lattices using tree tensor network states, SciPost Phys., 9 (2020), 070.
[14] O. Koch and C. Lubich, Dynamical low-rank approximation, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 434-454, https://doi.org/10.1137/050639703. · Zbl 1145.65031
[15] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), pp. 455-500, https://doi.org/10.1137/07070111X. · Zbl 1173.65029
[16] P. Kramer and M. Saraceno, Geometry of the Time-Dependent Variational Principle in Quantum mechanics, Lect. Notes in Phys. 140, Springer-Verlag, Berlin, 1981. · Zbl 0486.49001
[17] C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical analysis, Zur. Lect. Adv. Math., European Mathematical Society (EMS), Zürich, 2008, https://doi.org/10.4171/067. · Zbl 1160.81001
[18] C. Lubich, Time integration in the multiconfiguration time-dependent Hartree method of molecular quantum dynamics, Appl. Math. Res. Express, 2015 (2015), pp. 311-328, https://doi.org/10.1093/amrx/abv006. · Zbl 1331.35290
[19] C. Lubich and I. V. Oseledets, A projector-splitting integrator for dynamical low-rank approximation, BIT, 54 (2014), pp. 171-188, https://doi.org/10.1007/s10543-013-0454-0. · Zbl 1314.65095
[20] C. Lubich, I. V. Oseledets, and B. Vandereycken, Time integration of tensor trains, SIAM J. Numer. Anal., 53 (2015), pp. 917-941, https://doi.org/10.1137/140976546. · Zbl 1312.65114
[21] C. Lubich, B. Vandereycken, and H. Walach, Time integration of rank-constrained Tucker tensors, SIAM J. Numer. Anal., 56 (2018), pp. 1273-1290. · Zbl 1407.37113
[22] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011), pp. 2295-2317. · Zbl 1232.15018
[23] D. Perez-García, F. Verstraete, M. M. Wolf, and J. I. Cirac, Matrix product state representations, Quantum Inf. Comput., 7 (2007), pp. 401-430. · Zbl 1152.81795
[24] Y.-Y. Shi, L.-M. Duan, and G. Vidal, Classical simulation of quantum many-body systems with a tree tensor network, Phys. Rev. A, 74 (2006), 022320.
[25] A. Uschmajew and B. Vandereycken, The geometry of algorithms using hierarchical tensors, Linear Algebra Appl., 439 (2013), pp. 133-166. · Zbl 1281.65062
[26] H. Wang and M. Thoss, Multilayer formulation of the multiconfiguration time-dependent Hartree theory, J. Chem. Phys., 119 (2003), pp. 1289-1299.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.