×

Sparse identification of multiphase turbulence closures for coupled fluid-particle flows. (English) Zbl 1461.76097

Summary: In this work, model closures of the multiphase Reynolds-averaged Navier-Stokes (RANS) equations are developed for homogeneous, fully developed gas-particle flows. To date, the majority of RANS closures are based on extensions of single-phase turbulence models, which fail to capture complex two-phase flow dynamics across dilute and dense regimes, especially when two-way coupling between the phases is important. In the present study, particles settle under gravity in an unbounded viscous fluid. At sufficient mass loadings, interphase momentum exchange between the phases results in the spontaneous generation of particle clusters that sustain velocity fluctuations in the fluid. Data generated from Eulerian-Lagrangian simulations are used in a sparse regression method for model closure that ensures form invariance. Particular attention is paid to modelling the unclosed terms unique to the multiphase RANS equations (drag production, drag exchange, pressure strain and viscous dissipation). A minimal set of tensors is presented that serve as the basis for modelling. It is found that sparse regression identifies compact, algebraic models that are accurate across flow conditions and robust to sparse training data.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76F05 Isotropic turbulence; homogeneous turbulence
76T15 Dusty-gas two-phase flows
76T20 Suspensions
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Agrawal, K., Holloway, W., Milioli, C.C., Milioli, F.E. & Sundaresan, S.2013Filtered models for scalar transport in gas-particle flows. Chem. Engng Sci.95, 291-300.
[2] Agrawal, K., Loezos, P.N., Syamlal, M. & Sundaresan, S.2001The role of meso-scale structures in rapid gas-solid flows. J. Fluid Mech.445, 151-186. · Zbl 1156.76450
[3] Aliseda, A., Cartellier, A., Hainaux, F. & Lasheras, J.C.2002Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech.468, 77-105. · Zbl 1152.76303
[4] Anderson, T.B. & Jackson, R.1967Fluid mechanical description of fluidized beds. Equations of motion. Ind. Engng Chem. Fundam.6 (4), 527-539.
[5] Balachandar, S. & Eaton, J.K.2010Turbulent dispersed multiphase flow. Ann. Rev. Fluid Mech.42, 111-133. · Zbl 1345.76106
[6] Batchelor, G.K.1972Sedimentation in a dilute dispersion of spheres. J. Fluid Mech.52, 245-268. · Zbl 0252.76069
[7] Batchelor, G.K.1982Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory. J. Fluid Mech.119, 379-408. · Zbl 0498.76088
[8] Batchelor, G.K.1988A new theory of the instability of a uniform fluidized bed. J. Fluid Mech.193, 75-110. · Zbl 0648.76028
[9] Beetham, S. & Capecelatro, J.2019Biomass pyrolysis in fully-developed turbulent riser flow. Renew. Energy140, 751-760.
[10] Beetham, S. & Capecelatro, J.2020Formulating turbulence closures using sparse regression with embedded form invariance. Phys. Rev. Fluids5, 084611.
[11] Besnard, D., Harlow, F.H. & Rauenzhan, R.M.1987 Conservation and transport properties of turbulence with large density variations. Tech. Rep. LA-10911-MS. Los Alamos National Laboratory.
[12] Bode, M., Gauding, M., Kleinheinz, K. & Pitsch, H.2019 Deep learning at scale for subgrid modeling in turbulent flows: regression and reconstruction. arXiv:1910.00928v1.
[13] Bosse, T., Kleiser, L. & Meiburg, E.2006Small particles in homogeneous turbulence: settling velocity enhancement by two-way coupling. Phys. Fluids18 (2), 027102.
[14] Brunton, S.L., Proctor, J.L. & Kutz, J.N.2016Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci.113 (15), 3932-3937. · Zbl 1355.94013
[15] Cao, J. & Ahmadi, G.1995Gas-particle two-phase turbulent flow in a vertical duct. Intl J. Multiphase Flow21 (6), 1203-1228. · Zbl 1135.76374
[16] Capecelatro, J. & Desjardins, O.2013An Euler-Lagrange strategy for simulating particle-laden flows. J. Comput. Phys.238, 1-31. · Zbl 1286.76142
[17] Capecelatro, J., Desjardins, O. & Fox, R.O.2014Numerical study of collisional particle dynamics in cluster-induced turbulence. J. Fluid Mech.747, 1-13.
[18] Capecelatro, J., Desjardins, O. & Fox, R.O.2015On fluid-particle dynamics in fully-developed cluster-induced turbulence. J. Fluid Mech.780, 578-635. · Zbl 1382.76101
[19] Capecelatro, J., Desjardins, O. & Fox, R.O.2016aEffect of domain size on fluid-particle statistics in homogeneous, gravity-driven, cluster-induced turbulence. Trans. ASME: J. Fluids Engng138, 1-8.
[20] Capecelatro, J., Desjardins, O. & Fox, R.O.2016bStrongly-coupled gas-particle flows in vertical channels. Part 2. Turbulence modeling. Phys. Fluids28, 1-22.
[21] Capecelatro, J., Desjardins, O. & Fox, R.O.2018On the transition between turbulence regimes in particle-laden channel flows. J. Fluid Mech.845, 499. · Zbl 1404.76110
[22] Cheng, Y., Guo, Y., Wei, F., Jin, Y. & Lin, W.1999Modeling the hydrodynamics of downer reactors based on kinetic theory. Chem. Engng Sci.54, 2019-2027.
[23] Cundall, P.A. & Strack, O.D.L.1979A discrete numerical model for granular assemblies. Geotechnique29 (1), 47-65.
[24] Dasgupta, S., Jackson, R. & Sundaresan, S.1994Turbulent gas-particle flow in vertical risers. AIChE J.40 (2), 215-228.
[25] Dasgupta, S., Jackson, R. & Sundaresan, S.1998Gas-particle flow in vertical pipes with high mass loading of particles. Powder Technol.96, 6-23.
[26] Desjardins, O., Blanquart, G., Balarac, G. & Pitsch, H.2008High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys.227 (15), 7125-7159. · Zbl 1201.76139
[27] Duraisamy, K. & Durbin, P.A.2014 Transition modeling using data driven approaches. In Proceedings of the Summer Program, p. 427. Center for Turbulence Research, Stanford University.
[28] Duraisamy, K., Zhang, Z.J. & Singh, A.P.2015 New approaches in turbulence and transition modeling using data-driven techniques. In 53rd AIAA Aerospace Sciences Meeting, p. 1284.
[29] Eaton, J.K. & Fessler, J.R.1994Preferential concentration of particles by turbulence. Intl J. Multiphase Flow20, 169-209. · Zbl 1134.76536
[30] Ferrante, A. & Elghobashi, S.2003On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence. Phys. Fluids15 (2), 315-329. · Zbl 1185.76126
[31] Fox, R.O.2014On multiphase turbulence models for collisional fluid-particle flows. J. Fluid Mech.742, 368-424. · Zbl 1328.76072
[32] Gatski, T.B. & Speziale, C.G.1993On explicit algebraic stress models for complex turbulent flows. J. Fluid Mech.254, 59-78. · Zbl 0781.76052
[33] Glasser, B.J., Sundaresan, S. & Kevrekidis, I.G.1998From bubbles to clusters in fluidized beds. Phys. Rev. Lett.81, 1849.
[34] Goldhirsch, I. & Zanetti, G.1993Clustering instability in dissipative gases. Phys. Rev. Lett.70 (11), 1619. · Zbl 0773.76007
[35] Guo, L. & Capecelatro, J.2019The role of clusters on heat transfer in sedimenting gas-solid flows. Intl J. Heat Mass Transfer132, 1217-1230.
[36] Hastie, T., Tibshirani, R. & Friedman, J.2009The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer. · Zbl 1273.62005
[37] Hopkins, M.A. & Louge, M.Y.1991Inelastic microstructure in rapid granular flows of smooth disks. Phys. Fluids3 (1), 47-57.
[38] Innocenti, A., Fox, R.O., Salvetti, M.V. & Chibbaro, S.2019A Lagrangian probability-density- function model for collisional turbulent fluid-particle flows. J. Fluid Mech.862, 449-489. · Zbl 1415.76399
[39] Jiang, Y.Y. & Zhang, P.2012Numerical investigation of slush nitrogen flow in a horizontal pipe. Chem. Engng Sci.73, 169-180.
[40] Johnson, B.M. & Schilling, O.2011Reynolds-averaged Navier-Stokes model predictions of linear instability. I: Buoyancy-and shear-driven flows. J. Turbul.12, N36.
[41] Jordan, M.I. & Mitchell, T.M.2015Machine learning: trends, perspectives, and prospects. Science349 (6245), 255-260. · Zbl 1355.68227
[42] Ling, J., Kurzawski, A. & Templeton, J.2016Reynolds averaged turbulence modeling using deep neural networks with embedded invariance. J. Fluid Mech.807, 155-166. · Zbl 1383.76175
[43] Liu, W. & Fang, J.2019 Iterative framework of machine-learning based turbulence modeling for Reynolds-averaged Navier-Stokes simulations. arXiv:1910.01232v1.
[44] Lu, C.2010 Artificial neural network for behavior learning from meso-scale simulations, application to multi-scale multimaterial flows. PhD thesis, University of Iowa.
[45] Ma, M., Lu, J. & Tryggvason, G.2016Using statistical learning to close two-fluid multiphase flow equations for bubbly flows in vertical channels. Intl J. Multiphase Flow85, 336-347.
[46] Ma, T., Lucas, D. & Bragg, A.D.2020Explicit algebraic relation for calculating Reynolds normal stresses in flows dominated by bubble-induced turbulence. Phys. Rev. Fluids5, 084305.
[47] Milano, M. & Koumoutsakos, P.2002Neural network modeling for near wall turbulent flow. J. Comput. Phys.182, 1-26. · Zbl 1090.76535
[48] Miller, D.C., et al.. 2014Carbon capture simulation initiative: a case study in multiscale modeling and new challenges. Annu. Rev. Chem. Biomol. Engng5, 301-323.
[49] Mudde, R.F.2005Gravity-driven bubbly flows. Annu. Rev. Fluid Mech.37, 393-423. · Zbl 1117.76064
[50] Pierce, C.D.2001 Progress-variable approach for large-eddy simulation of turbulent combustion. PhD thesis, Stanford University, CA.
[51] Pope, S.B.1975A more general effective-viscosity hypothesis. J. Fluid Mech.72 (2), 331-340. · Zbl 0315.76024
[52] Pope, S.B.2000Turbulent Flows. Cambridge University Press. · Zbl 0966.76002
[53] Pouransari, H. & Mani, A.2017Effects of preferential concentration on heat transfer in particle-based solar receivers. J. Solar Energy Engng139 (2), 021008.
[54] Rajabi, E. & Kavianpour, M.R.2012Intelligent prediction of turbulent flow over backward-facing step using direct numerical simulation data. Engng Appl. Comput. Fluid Mech.6 (4), 490-503.
[55] Rao, A., Curtis, J.S., Hancock, B.C. & Wassgren, C.2012Numerical simulation of dilute turbulent gas-particle flow with turbulence modulation. AIChE J.58, 1381-1396.
[56] Rzehak, R. & Krepper, E.2013CFD modeling of bubble-induced turbulence. Intl J. Multiphase Flow55, 138-155.
[57] Schmelzer, M., Dwight, R.P. & Cinnella, P.2020Discovery of algebraic Reynolds-stress models using sparse symbolic regression. Flow Turbul. Combust.104 (2), 579-603.
[58] Shaffer, F., Gopalan, B., Breault, R.W., Cocco, R., Karri, S.B., Hays, R. & Knowlton, T.2013High speed imaging of particle flow fields in CFB risers. Powder Technol.242, 86-99.
[59] De Silva, B.M., Champion, K., Quade, M., Loiseau, J. -C., Kutz, J.N. & Brunton, S.L.2020 Pysindy: a python package for the sparse identification of nonlinear dynamics from data. arXiv:2004.08424.
[60] Sinclair, J.L. & Jackson, R.1989Gas-particle flow in a vertical pipe with particle-particle interactions. AIChE J.35 (9), 1473-1486.
[61] Spencer, A.J.M. & Rivlin, R.S.1958The theory of matrix polynomials and its application to the mechanics of isotropic continua. Arch. Rat. Mech. Anal.2, 309-336. · Zbl 0095.25101
[62] Speziale, C.G., Sarkar, S. & Gatski, T.B.1991Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach. J. Fluid Mech.227, 245-272. · Zbl 0728.76052
[63] Sun, Z. & Zhu, J.2019A consolidated flow regime map of upward gas fluidization. AIChE J.65, 1-15.
[64] Sundaram, S. & Collins, L.R.1994Spectrum of density fluctuations in a particle-fluid system-I. Monodisperse spheres. Intl J. Multiphase Flow20 (6), 1021-1037. · Zbl 1388.76425
[65] Sundaram, S. & Collins, L. R1999A numerical study of the modulation of isotropic turbulence by suspended particles. J. Fluid Mech.379, 105-143. · Zbl 0938.76045
[66] Tenneti, S. & Subramaniam, S.2011Drag law for monodisperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Intl J. Multiphase Flow37 (9), 1072-1092.
[67] Tracey, B., Duraisamy, K. & Alonso, J.J.2015 A machine learning strategy to assist turbulence model development. AIAA Paper 1287.
[68] Wang, L.P. & Maxey, M.R.1993Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech.256, 27-68.
[69] Wylie, J.J. & Koch, D.L.2000Particle clustering due to hydrodynamic interactions. Phys. Fluids12 (5), 964-970. · Zbl 1149.76590
[70] Yang, T.S. & Shy, S.S.2003The settling velocity of heavy particles in an aqueous near-isotropic turbulence. Phys. Fluids15 (4), 868-880. · Zbl 1185.76408
[71] Zeng, Z.X. & Zhou, L.X.2006A two-scale second-order moment particle turbulence model and simulation of dense gas-particle flows in a riser. Powder Technol.162, 27-32.
[72] Zhou, Y.2017Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep.723-725, 1-160. · Zbl 1377.76017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.