×

Inverse heat source problem and experimental design for determining iron loss distribution. (English) Zbl 1477.65178

Summary: Iron loss determination in the magnetic core of an electrical machine, such as a motor or a transformer, is formulated as an inverse heat source problem. The sensor positions inside the object are optimized in order to minimize the uncertainty in the reconstruction in the sense of the A-optimality of Bayesian experimental design. This paper focuses on the problem formulation and an efficient numerical solution of the discretized sensor optimization and source reconstruction problems. A semirealistic linear model is discretized by finite elements and studied numerically.

MSC:

65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
80A23 Inverse problems in thermodynamics and heat transfer
62K05 Optimal statistical designs
35K20 Initial-boundary value problems for second-order parabolic equations
62F15 Bayesian inference
78A55 Technical applications of optics and electromagnetic theory

Software:

L-BFGS-B
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] R. A. Adams, Sobolev Spaces, Pure Appl. Math. 65, Academic Press, New York, London, 1975. · Zbl 0314.46030
[2] A. Alexanderian, N. Petra, G. Stadler, and O. Ghattas, A-optimal design of experiments for infinite-dimensional Bayesian linear inverse problems with regularized \(l_0\)-sparsification, SIAM J. Sci. Comput., 36 (2014), pp. A2122-A2148, https://doi.org/10.1137/130933381. · Zbl 1314.62163
[3] A. Alexanderian, N. Petra, G. Stadler, and O. Ghattas, A fast and scalable method for A-optimal design of experiments for infinite-dimensional Bayesian nonlinear inverse problems, SIAM J. Sci. Comput., 38 (2016), pp. A243-A272, https://doi.org/10.1137/140992564. · Zbl 06536072
[4] A. Boglietti and A. Cavagnino, Analysis of the endwinding cooling effects in TEFC induction motors, IEEE Trans. Ind. Appl., 43 (2007), pp. 1214-1222.
[5] D. Calvetti and E. Somersalo, Priorconditioners for linear systems, Inverse Problems, 21 (2005), pp. 1397-1418. · Zbl 1087.65044
[6] J. R. Cannon, Determination of an unknown heat source from overspecified boundary data, SIAM J. Numer. Anal., 5 (1968), pp. 275-286, https://doi.org/10.1137/0705024. · Zbl 0176.15403
[7] K. Chaloner and I. Verdinelli, Bayesian experimental design: A review, Statist. Sci., 10 (1995), pp. 273-304. · Zbl 0955.62617
[8] V. Druskin, On the uniqueness of inverse problems from incomplete boundary data, SIAM J. Appl. Math., 58 (1998), pp. 1591-1603, https://doi.org/10.1137/S0036139996298292. · Zbl 0921.35185
[9] H. W. Engl, O. Scherzer, and M. Yamamoto, Uniqueness and stable determination of forcing terms in linear partial differential equations with overspecified boundary data, Inverse Problems, 10 (1994), pp. 1253-1276. · Zbl 0809.35154
[10] H. Flath, L. Wilcox, V. Akcelik, J. Hill, B. van Bloemen Waanders, and O. Ghattas, Fast algorithms for Bayesian uncertainty quantification in large-scale linear inverse problems based on low-rank partial Hessian approximations, SIAM J. Sci. Comput., 33 (2011), pp. 407-432, https://doi.org/10.1137/090780717. · Zbl 1229.65174
[11] E. Haber, L. Horesh, and L. Tenorio, Numerical methods for experimental design of large-scale linear ill-posed inverse problems, Inverse Problems, 24 (2008), 055012. · Zbl 1153.65062
[12] E. Haber, L. Horesh, and L. Tenorio, Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems, Inverse Problems, 26 (2009), 025002. · Zbl 1189.65073
[13] N. Halko, P.-G. Martinsson, and J. A. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011), pp. 217-288, https://doi.org/10.1137/090771806. · Zbl 1269.65043
[14] D. N. Hao, B. V. Huong, N. T. N. Oanh, and P. X. Thanh, Determination of a term in the right-hand side of parabolic equations, J. Comput. Appl. Math., 309 (2017), pp. 28-43. · Zbl 1433.65195
[15] X. Huan and Y. M. Marzouk, Simulation-based optimal Bayesian experimental design for nonlinear systems, J. Comput. Phys., 232 (2013), pp. 288-317.
[16] N. Hyvönen, A. Seppänen, and S. Staboulis, Optimizing electrode positions in electrical impedance tomography, SIAM J. Appl. Math., 74 (2014), pp. 1831-1851, https://doi.org/10.1137/140966174. · Zbl 1457.65168
[17] A. Javili, A. McBride, and P. Steinmann, Numerical modelling of thermomechanical solids with mechanically energetic (generalised) Kapitza interfaces, Comput. Mater. Sci., 65 (2012), pp. 542-551.
[18] J. P. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Appl. Math. Sci. 160, Springer-Verlag, New York, 2005. · Zbl 1068.65022
[19] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, 2nd ed., Appl. Math. Sci. 120, Springer, New York, 2011. · Zbl 1213.35004
[20] D. Kowal, P. Sergeant, L. Dupré, and L. Vandenbossche, Comparison of iron loss models for electrical machines with different frequency domain and time domain methods for excess loss prediction, IEEE Trans. Magn., 51 (2015), pp. 1-10.
[21] A. Krings, S. Nategh, O. Wallmark, and J. Soulard, Local iron loss identification by thermal measurements on an outer-rotor permanent magnet synchronous machine, in Proceedings of the 15th International Conference on Electrical Machines and Systems (ICEMS), 2012, pp. 1-5.
[22] J. L. Morales and J. Nocedal, Remark on “Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization,” ACM Trans. Math. Softw., 38 (2011), 7. · Zbl 1365.65164
[23] D. G. Nair and A. Arkkio, Inverse thermal modeling to determine power losses in induction motor, IEEE Trans. Magn., 53 (2017), pp. 1-4.
[24] A. I. Nazarov and S. I. Repin, Exact constants in Poincaré type inequalities for functions with zero mean boundary traces, Math. Methods Appl. Sci., 38 (2015), pp. 3195-3207. · Zbl 1348.46041
[25] J. Necas, Direct Methods in the Theory of Elliptic Equations, Springer Monogr. Math., Springer, Heidelberg, 2012; translated from the 1967 French original by G. Tronel and A. Kufner. · Zbl 1225.35003
[26] M. Renardy and R. C. Rogers, An introduction to partial differential equations, Texts Appl. Math. 13, Springer-Verlag, New York, 1993. · Zbl 0917.35001
[27] J. P. Serre, A Course in Arithmetic, Grad. Texts Math. 7, Springer, 1973. · Zbl 0256.12001
[28] D. A. Staton and A. Cavagnino, Convection heat transfer and flow calculations suitable for electric machines thermal models, IEEE Trans. Ind. Electron., 55 (2008), pp. 3509-3516.
[29] A. M. Stuart, Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), pp. 451–-559. · Zbl 1242.65142
[30] B. Yoheswaran and K. R. Pullen, Flow and convective heat transfer in disk-type electric machines with coolant flow, in 2014 International Conference on Electrical Machines (ICEM), 2014, pp. 2165-2171.
[31] K. Yosida, Functional Analysis, Classics Math., Springer-Verlag, Berlin, 1995; reprint of the sixth (1980) edition.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.