×

Mathematical programs with multiobjective generalized Nash equilibrium problems in the constraints. (English) Zbl 1525.90358

Summary: This paper considers a class of mathematical programs that include multiobjective generalized Nash equilibrium problems in the constraints. Little research can be found in the literature although it has some interesting applications. We present a single level reformulation for this kind of problems and show their equivalence in terms of global and local minimizers. We find that the reformulation is a special case of the so-called mathematical program with equilibrium constraints which is extensively studied in the literature.

MSC:

90C27 Combinatorial optimization
91B50 General equilibrium theory

Software:

MacMPEC
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Andreani, R.; Castro, S.; Chela, J.; Friedlander, A.; Santos, S. A., An inexact-restoration method for nonlinear bilevel programming problems, Comput. Optim. Appl., 43, 3, 307-328 (2009) · Zbl 1170.90484
[2] Andreani, R.; Haeser, G.; Secchin, L. D.; Silva, P. J., New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences, SIAM J. Optim., 29, 4, 3201-3230 (2019) · Zbl 1427.90258
[3] Andreani, R.; Ramirez, V. A.; Santos, S. A.; Secchin, L. D., Bilevel optimization with a multiobjective problem in the lower level, Numer. Algorithms, 81, 3, 915-946 (2019) · Zbl 1415.90112
[4] Andreani, R.; Secchin, L. D.; Silva, P. J., Convergence properties of a second order augmented Lagrangian method for mathematical programs with complementarity constraints, SIAM J. Optim., 28, 3, 2574-2600 (2018) · Zbl 1406.90114
[5] Arrow, K. J.; Debreu, G., Existence of an equilibrium for a competitive economy, Econometrica, 265-290 (1954) · Zbl 0055.38007
[6] Bard, J. F., Practical Bilevel Optimization: Algorithms and Applications, Vol. 30 (2013), Springer Science & Business Media
[7] Bonnel, H.; Morgan, J., Semivectorial bilevel optimization problem: penalty approach, J. Optim. Theory Appl., 131, 3, 365-382 (2006) · Zbl 1205.90258
[8] Borwein, J.; Lewis, A. S., Convex Analysis and Nonlinear Optimization: Theory and Examples (2010), Springer Science & Business Media
[9] Bracken, J.; McGill, J. T., Mathematical programs with optimization problems in the constraints, Oper. Res., 21, 1, 37-44 (1973) · Zbl 0263.90029
[10] Bueno, L. F., An augmented Lagrangian method for quasi-equilibrium problems, Comput. Optim. Appl., 1-30 (2020)
[11] Bueno, L. F.; Haeser, G.; Martínez, J. M., An inexact restoration approach to optimization problems with multiobjective constraints under weighted-sum scalarization, Optim. Lett., 10, 6, 1315-1325 (2016) · Zbl 1353.90143
[12] Bueno, L. F.; Haeser, G.; Rojas, F. N., Optimality conditions and constraint qualifications for generalized Nash equilibrium problems and their practical implications, SIAM J. Optim., 29, 1, 31-54 (2019) · Zbl 1422.91049
[13] Chan, T. C.; Lee, T., Trade-off preservation in inverse multi-objective convex optimization, European J. Oper. Res., 270, 1, 25-39 (2018) · Zbl 1403.90600
[14] Colson, B.; Marcotte, P.; Savard, G., An overview of bilevel optimization, Ann. Oper. Res., 153, 1, 235-256 (2007) · Zbl 1159.90483
[15] Dempe, S., Foundations of Bilevel Programming (2002), Springer Science & Business Media · Zbl 1038.90097
[16] Dempe, S., Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints (2003), Taylor & Francis · Zbl 1140.90493
[17] Dempe, S.; Dutta, J., Is bilevel programming a special case of a mathematical program with complementarity constraints?, Math. Program., 131, 1-2, 37-48 (2012) · Zbl 1235.90145
[18] Dempe, S.; Gadhi, N.; Zemkoho, A. B., New optimality conditions for the semivectorial bilevel optimization problem, J. Optim. Theory Appl., 157, 1, 54-74 (2013) · Zbl 1266.90160
[19] Ehrgott, M., Multicriteria Optimization, Vol. 491 (2005), Springer Science & Business Media · Zbl 1132.90001
[20] Eichfelder, G., Multiobjective bilevel optimization, Math. Program., 123, 2, 419-449 (2010) · Zbl 1198.90347
[21] Facchinei, F.; Kanzow, C., Generalized Nash equilibrium problems, 4OR, 5, 3, 173-210 (2007) · Zbl 1211.91162
[22] Ferris, M. C.; Pang, J.-S., Engineering and economic applications of complementarity problems, SIAM Rev., 39, 4, 669-713 (1997) · Zbl 0891.90158
[23] Fletcher, R.; Leyffer, S., Solving mathematical programs with complementarity constraints as nonlinear programs, Optim. Methods Softw., 19, 1, 15-40 (2004) · Zbl 1074.90044
[24] Gauvin, J.; Dubeau, F., Differential properties of the marginal function in mathematical programming, (Optimality and Stability in Mathematical Programming (1982), Springer), 101-119 · Zbl 0502.90072
[25] Guo, L.; Chen, X., Mathematical programs with complementarity constraints and a non-Lipschitz objective: optimality and approximation, Math. Program., 1-31 (2019)
[26] Harker, P. T., Generalized Nash games and quasi-variational inequalities, European J. Oper. Res., 54, 1, 81-94 (1991) · Zbl 0754.90070
[27] Hoheisel, T.; Kanzow, C.; Schwartz, A., Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints, Math. Program., 137, 1-2, 257-288 (2013) · Zbl 1262.65065
[28] Jane, J., Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints, J. Math. Anal. Appl., 307, 1, 350-369 (2005) · Zbl 1112.90062
[29] Jia, L.; Wang, Y.; Fan, L., Multiobjective bilevel optimization for production-distribution planning problems using hybrid genetic algorithm, Integr. Comput.-Aided Eng., 21, 1, 77-90 (2014)
[30] Li, C.; Guo, L., A single-level reformulation of mixed integer bilevel programming problems, Oper. Res. Lett., 45, 1, 1-5 (2017) · Zbl 1409.90118
[31] Luo, Z.-Q.; Pang, J.-S.; Ralph, D., Mathematical Programs with Equilibrium Constraints (1996), Cambridge University Press
[32] McKenzie, L. W., On the existence of general equilibrium for a competitive market, Econometrica, 54-71 (1959) · Zbl 0095.34302
[33] Nash, J. F., Equilibrium points in n-person games, Proc. Natl. Acad. Sci., 36, 1, 48-49 (1950) · Zbl 0036.01104
[34] Pieume, C. O.; Marcotte, P.; Fotso, L. P.; Siarry, P., Solving bilevel linear multiobjective programming problems, Am. J. Oper. Res., 1, 4, 214-219 (2011)
[35] Rosen, J. B., Existence and uniqueness of equilibrium points for concave n-person games, Econometrica, 33, 520-534 (1965) · Zbl 0142.17603
[36] Scheel, H.; Scholtes, S., Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity, Math. Oper. Res., 25, 1, 1-22 (2000) · Zbl 1073.90557
[37] Vicente, L. N.; Calamai, P. H., Bilevel and multilevel programming: A bibliography review, J. Glob. Optim., 5, 3, 291-306 (1994) · Zbl 0822.90127
[38] Von Stackelberg, H., Marktform Und Gleichgewicht (1934), Springer · Zbl 1405.91003
[39] Ye, J. J.; Zhu, Q., Multiobjective optimization problem with variational inequality constraints, Math. Program., 96, 1, 139-160 (2003) · Zbl 1041.90052
[40] Zhao, L.; Li, C.; Huang, R.; Si, S.; Xue, J.; Huang, W.; Hu, Y., Harmonizing model with transfer tax on water pollution across regional boundaries in a China’s lake basin, European J. Oper. Res., 225, 2, 377-382 (2013) · Zbl 1292.91142
[41] Zhao, L.; Qian, Y.; Huang, R.; Li, C.; Xue, J.; Hu, Y., Model of transfer tax on transboundary water pollution in China’s river basin, Oper. Res. Lett., 40, 3, 218-222 (2012) · Zbl 1245.91075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.